7 A

Applications and
Devices Benchmarking

Paper Title: Guided test case generation for mobile apps in the TRIANGLE project: work in progress

Authors: Laura Panizo, Alberto Salmerdn, Maria-del-Mar Gallardo, Pedro Merino?
1. University of Malaga, Spain, {anarosario, gallardo, salmeron, pedro}@Icc.uma.es
Presented at: 24th ACM SIGSOFT International SPIN Symposium on Model Checking of Software
(SPIN 2017), 13-14 July 2017, Santa Barbara, CA, USA
Published in: Proceedings of the 24th ACM SIGSOFT International SPIN Symposium on Model
Checking of Software
DOI (link to publication from Publisher): 10.1145/3092282.3092298
Publication date: 2017
Document Version Accepted author manuscript, peer reviewed version.

Citation for published version (IEEE):

Laura Panizo et al, “Guided test case generation for mobile apps in the TRIANGLE project: work in
progress” 24th ACM SIGSOFT International SPIN Symposium on Model Checking of Software (SPIN
2017), ©2017 Authors

Please note that copyright and moral rights for the publications made accessible in the public portal are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
= Users may download and print one copy of any publication from the public portal for the purpose of private
study or research.
= You may not further distribute the material or use it for any profit-making activity or commercial gain
= You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us at info@triangle-project.eu providing details, and
we will remove access to the work immediately and investigate your claim.

TRIANGLE Project: http://www.triangle-project.eu/

http://www.triangle-project.eu/
mailto:info@triangle-project.eu

Guided Test Case Generation for Mobile Apps in the
TRIANGLE Project: Work in Progress™

Laura Panizo, Alberto Salmerén, Maria-del-Mar Gallardo, and Pedro Merino
Universidad de Malaga, Andalucia Tech.
Dept. Lenguajes y Ciencias de la Computacién
Malaga, Espafia
[laurapanizo,salmeron,gallardo,pedro]@lcc.uma.es

ABSTRACT

The evolution of mobile networks and the increasing number of
scenarios for mobile applications requires new approaches to ensure
their quality and performance. The TRIANGLE project aims to
develop an integrated testing framework that allows the evaluation
of applications and devices in different network scenarios. This
paper focuses on the generation of user interactions that will be
part of the test cases for applications. We propose a method that
combines model-based testing and guided search, based on the Key
Performance Indicators to be measured, and we have evaluated
our proposal with an example. Our ultimate goal is to integrate
the guided generation of user flows into the TRIANGLE testing
framework to automatically generate and execute test cases.

CCS CONCEPTS

- Software and its engineering — Software verification and vali-
dation; Software testing and debugging; Empirical software valida-
tion;

KEYWORDS
Model-based testing, test case generation, SPIN

ACM Reference format:

Laura Panizo, Alberto Salmerén, Maria-del-Mar Gallardo, and Pedro Merino.
2017. Guided Test Case Generation for Mobile Apps in the TRIANGLE
Project: Work in Progress. In Proceedings of SPIN’17, Santa Barbara, CA,
USA, July 13-14, 2017, 4 pages.

https://doi.org/10.1145/3092282.3092298

1 INTRODUCTION

The growing influence of mobile phone applications in our lives
has revealed the importance of testing techniques that ensure their
quality. Testing is not only important to detect behavioural or func-
tional errors, but also to assess non-functional properties related
to the applications performance or the user experience. Mobile
apps have to deal with a highly changeable environment (changes

*The TRIANGLE project is funded by the European Union’s Horizon 2020 research
and innovation programme, grant agreement No 688712.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPIN’17, July 13-14, 2017, Santa Barbara, CA, USA

© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5077-8/17/07.

https://doi.org/10.1145/3092282.3092298

192

in bandwidth, lost of connection, etc.) and with limited resources
(battery, memory, etc.). For a developer, it is important to know
how the application reacts in these adverse scenarios.

The TRIANGLE project! focuses on the development of a test-
ing framework to ensure users’ Quality of Experience (QoE) in
5G networks, since they will introduce very challenging network
scenarios. Apps and devices will be benchmarked using a set of Key
Performance Indicators (KPIs), organised around 5G use cases such
as videostreaming.

In previous work [2-4], we presented an approach for automat-
ing the analysis of ANDROID mobile apps, based on model-based
testing and runtime verification. The former was used to generate
a large set of test cases from an app model provided by the user,
and then the latter analysed the executions of each one for certain
properties of interest.

This approach has one fundamental problem: a reasonably com-
plete model of an app will generate thousands, if not millions, of
user interactions. This is unfeasible to execute on a real mobile
device. Furthermore, if a developer wanted to test one particular
part or feature of the app, the model had to be manually modified
in order to include only the desired behaviours. The compositional
nature of the app models was not enough to make this task easy,
and the user could also miss significant behaviours that contributed
to the feature being tested while modifying the model. Other ap-
proaches addressing test case generation define a coverage criteria
that reduces the number of test cases [6], or use equivalent class
partitioning techniques to generate a small and representative suite
of test cases [1].

Our aim is to extend our previous work with similar techniques
that allow the guided generation of user interactions that are useful
for a given purpose, using only a single app model. In the case of
the TRIANGLE project, KPIs will be used to guide this process.
In this way, we explicitly separate the app model construction
and the specific requirements to produce meaningful test cases.
In consequence, the reduction of the generated user interactions
happens in the generation process rather than in the modelling
phase.

The paper is organised as follows. Section 2 introduces the TRI-
ANGLE project. Section 3 presents our approach to reduce the
number of test cases generated, and shows some preliminary re-
sults using a music player mobile app. Finally, Section 4 summarises
the current and future work.

!http://www.triangle-project.eu/

https://doi.org/10.1145/3092282.3092298
https://doi.org/10.1145/3092282.3092298

SPIN’17, July 13-14, 2017, Santa Barbara, CA, USA

User
App user App
App ‘ flows model ! GES
H ‘! H
§App user flow Measurement

generator and KPI analysis

Test case
execution

TRIANGLE

Figure 1: App user flows in the TRIANGLE testing frame-
work overview

2 THE TRIANGLE PROJECT

The goal of the TRIANGLE project is to provide a framework where
app developers and device makers can test and benchmark their
applications and devices, to make sure they are ready for the chal-
lenges presented by the imminent 5G future. Developers will be
able to evaluate their products and refine them in a controlled lab
environment, and also opt for certification, comparing their per-
formances against reference values for the use cases they support.
Connected eHealth, smart cities, and media are among the uses
cases that will greatly benefit by future 5G deployments.

TRIANGLE will take care of emulating several aspects of the
mobile network, from the radio access with impairments to the core
of the network. The details of these configurations will be hidden
from regular end users, showing instead high-level scenarios such
as pedestrian or automotive.

Apps and devices will be benchmarked using a set of KPIs, organ-
ised around 5G use cases such as videostreaming or eHealth. These
KPIs will evaluate aspects such as battery or resource consumption,
and QoE. To evaluate mobile devices, a set of reference mobile apps
will be used. However, app developers need to provide additional
information to evaluate some of these KPIs. While TRIANGLE de-
fines generic features that will be evaluated by these KPIs, such as
videostreaming, app developers need to provide how to actually use
those features in their apps. This is done by providing app user flows,
i.e. sequences of user actions that can be automatically executed on
the app installed on a mobile device. Currently, app developers have
to provide these app user flows that use these features individually.
Figure 1 shows a high-level overview of the TRIANGLE project
framework, highlighting the role of app user flows in the execution
of test cases.

3 GUIDING THE GENERATION OF APP USER
FLOWS

Model-based testing techniques use a model of the system under
test for generating test cases with an adequate coverage. In pre-
vious work, we modelled the app under test using nested state
machines [3]. By providing explicit models, a developer is able to
define the realistic uses of an app, instead of generating random
inputs to test it. An app state machine was composed of one or more

193

L. Panizo, A. Salmerdn, M.M. Gallardo, and P. Merino

. } R
UniversalMusicPlayer
MainView R
MusicPlayerStateMachine
selectlitem
®' navBack back back selectitem
.” play/pause play/pause selectitem
®¢_ navBack
play/
." pause
®‘_ back
ctriBar ctrlBar
(FuIIScreenView v h
FullScreenStateMachine
skipNext skipPrev
play/
pause
seekBar
= J
\ _/

Figure 2: Universal Music Player model

< Universal Music Player

Awakening
Silent Partner

Wish You'd Come True
The 126ers

Keys To The Kingdom
The 126ers

Drop and Roll

Silent Partner

Tell The Angels

Letter Box

Hey Sailor
Letter Box
Awakening

Home t Part

Letter Box
- Awakening | |
- Silent Partner

(a) Main activity (b) Full screen activity

Figure 3: Universal Music Player GUI

view state machines, which corresponded to the different screens
in an app, which in turn contained one or more state machines.
The edges of a state machine represented the user actions, such as
tapping a button or entering text, that should be executed when
traversing the edge.

Figure 2 shows an example app model for the Universal Music
Player sample app from the ANDROID SDK, whose GUI can be seen
in Figure 3. The app contains a list of songs classified by genre.
The user can select the genre and the first song to play. Then,
the app reproduces the list of songs in a loop starting from the
selected one. The app plays music until the user exits the app or
clicks the pause button. The app is divided into two activities: one
for selecting a song from genre playlists, and then a full screen
view with the playback controls. The first one shows the list of

Guided Test Case Generation for Mobile Apps in the
TRIANGLE Project: Work in Progress

1 DeviceType devices[DEVICES]

2 #define curBackstack devices[devicel].backstack

3 #define curState curBackstack.states[curBackstack.index]
4

5 proctype device_4107a7166c03af9b(int device) {

6 do

7 :: curBackstack.index > -1 8&&

8 curState == St_MainView_MusicPlayerSM_S2 ->
9 // Event: selectItem

10 transition(device, VIEW_MainView, 6);

11 curState = St_MainView_MusicPlayerSM_S2b

12 : curBackstack.index > -1 &&

13 curState == St_MainView_MusicPlayerSM_S2b ->
14 // Event: clickBack
15 transition(device,

16 curState =
17

VIEW_MainView, 7);
St_MusicPlayer_MainView_MusicPlayerSM_S1b
:: curBackstack.index > -1 && curState ==
St_FullScreenView_FullScreenSM_init ->
pushToBackstack (device,
St_FullScreenView_FullScreenPlayerSM_init);
transition(device, VIEW_FullScreenView, 0);
curState = St_FullScreenPlayerView_FullScreenSM_S@
/..
od

18
19
20
21
22
23
24)

Listing 1: Extract of PROMELA specification for test case

generation

songs and the play/pause button. The second one, provides more
playback controls in full screen size. The model in Figure 2 shows
the two activities (MainView and FullScreenView) and the possible
user events (Play/Pause, back, etc.) that can happen during the app
execution.

An app user flow is defined as a sequence of user events that goes
from an initial state to a final state of the app state machine. Thus,
by exploring the model exhaustively, we were able to generate all
possible app user flows. The app model is provided as an XML file,
which is translated into a PROMELA specification. We then used the

SpIN [5] model checker to explore this specification exhaustively.

When a valid end state was reached, we recorded the generated app
user flow in a result file. These app user flows were then converted
into Java programs that performed the flows on an actual ANDROID
device, using the UTAUTOMATOR APL

Listing 1 shows part of the PROMELA specification generated
automatically from the app model in Figure 2. The state machines
are translated in a single do loop, where each branch corresponds
to a transition. For instance, the one in line 7 corresponds to the
transition between states S2a and S2b.

The TRIANGLE project defines the KPIs of interest that will be
used to evaluate the features of mobile apps, and therefore provide
the requirements for the app user flows. These requirements are
specified as a set of mandatory states and/or transitions of the app

model that have to be reached, along with their execution order.

For instance, in audio streaming applications, the main KPIs are
the bit rate (related to audio quality), the buffering time (time spent
waiting until music play starts or resumes), play length (amount
of data streamed) and buffering ratio (waiting time over listening
time). In addition, in mobile phones, energy consumption is also
relevant, especially during playback. All these KPIs require that the
app starts playing music, thus a essential requirement of the app
user flows is starting music playback.

Since we use the exhaustive exploration of SPIN, it is natural
to describe the requirements as never claims [5]. The never claim

194

SPIN’17, July 13-14, 2017, Santa Barbara, CA, USA

is a special SPIN process that executes synchronously with the
system model, and checks whether a property holds. If it reaches
the end state (its closing curly brace), SPIN states that the property
is violated and produces a counter-example, which in our case is
interpreted as an app user flow that satisfies the requirements. Our
methodology consists of translating all requirements into a never
claim to make SpIN generates the app user flows that satisfy them.

Moreover, the never claim can also be used to prune the state
space explored, and thus reduce the time and resources required,
since SPIN backtracks and explores a different execution path when
the never claim is blocked.

We apply our approach to obtain the app user flows of the Univer-
sal Music Player app. In this case study, we focus on the following
requirements:

e The app eventually starts playing a song, which corre-
sponds to reach state S2b of the app model.

o After that it has to eventually exit. This means that the app
has to pass through states S1b, S0b and the end state of the
state machine.

e The full screen activity is never launched.

e The app user flow cannot execute a transition more than
once.

Figure 4 represents the never claim of the case study as an au-
tomaton. The label ! fullScreen expresses that the full screen activity
has been not visited, i.e. SPIN never takes the branch in line 17 in
Listing 1. Labels S2b, 1S2b and so on, specify that the corresponding
state of the app model has been (respectively not) reached. This is
checked when the branches are evaluated, e.g. in line 12. Finally,
the label !repeat states that there are no repeated transitions. We
have to define this requirement because in our PROMELA specifi-
cation, SPIN’s global state contains the app user flow explored so
far. Repeating a transition of the app model adds new actions to
the app user flow and produces new states in SpIN, thus the match-
ing algorithm does not detect the repeated transition in the app
model. Although it can seem a drawback, this behaviour allows us
to describe other kinds of requirements that explicitly fire an event
several times, which is very useful to discover behavioural errors
of the app.

Observe that each state of the automaton has two different tran-
sitions, one that links two states, and another that loops in the
same state. The linking transitions are guarded with the require-
ments and tracks that they are satisfied in the correct order. When
the automaton end state is reached, the corresponding app user
flow is returned. A looping transition lets the execution of the app
model advance while its guard condition is satisfied. When none of
the transitions are enabled, SPIN stops exploring the current path,
pruning the search state space, as commented above. Therefore, the
guard of a looping transition has to be disabled when the linking
transition is enabled (to correctly track the requirements) and when
the current app user flow is not interesting (to prune the search).
For instance, in Figure 4, the looping transitions exclude the paths
that have repeated transitions or activate the full screen activity.

We have carried out some experiments using SPIN 6.4.6, with two
different never claims: pr. and no-pr., as well as without one. The pr.
never claim prunes the search as we have explained (see Figure 4).
The no-pr never claim differs from pr in looping transitions, that

SPIN’17, July 13-14, 2017, Santa Barbara, CA, USA

1S2b &&!repeat
&& !fullScreen

1S1b &&!repeat
&& !fullScreen

1SOb &&!repeat
&& IfullScreen

lend &&!repeat
&& !fullScreen

end &&

Irepeat &&
S2b && S1b && SOb && IfullScreen
Irepeat && Irepeat && Irepeat &&
IfullScreen IfullScreen IfullScreen

Figure 4: Pruning never claim as automaton

Table 1: App user flow generation - Experiments

Max. | Never Flows | Time | Memory States
len.

10 pr. 18/20 <1ls 9.5MB 1,059
10 no-pr. 18/85 55s 11.1 MB 20,787
10 - -/85 <1s 10.9 MB 20,787
20 pr. 20/22 <1s 9.6 MB 1,645
20 no-pr. -/31,159 | 7.7h*| 1,29GB | 13,226,035
20 - /18,303,632 | 50.7s | 8,192MBP| 74,968,614

2 Unfinished after 7.7 hours
b Unfinished after reaching memory limit of 8 GB

are guarded by else instead of more restrictive conditions, such
as the ones in Figure 4. Table 1 shows the results. The first three
rows use a maximum app user flow length (maximum number of
app model transitions) of 10, and the bottom three rows use 20.
The Flows column shows two values. The first one represents the
number of app user flows that satisfy the requirements. The second
one represents all the app user flows explored. Observe that for a
maximum trace size of 10, the no-pr never claim explores 85 traces,
and only 18 are app user flows that satisfy the requirements. In
contrast, the pr. never claim explores 20 traces and finds the same
number of valid app user flows. This means that the use of the pr.
never claim drastically reduces the time elapsed in the analysis. The
difference between using the pr and no-pr never claims becomes
more evident when the maximum length of app user flow increases.
For example, when using a maximum length of 20 and the no-pr.
never claim, after more than seven hours and 31,159 different app
user flows explored (most of them not satisfying the requirements),
the analysis had still not finished. Therefore, our approach, which
uses the pr never claim to prune the search state space, greatly
improves the performance of test case generation process. If we
do not use a never claim at all, the generation of all possible app
user flows is much faster, as seen in third and sixth rows. However,
the developer does not know which ones satisfy the requirements.
For instance, in the sixth row, the user ends up with millions of
app user flows, which is not very useful in practice. It is clear that
pruning the state space using requirements is still the best option.

195

L. Panizo, A. Salmerén, M.M. Gallardo, and P. Merino

4 CONCLUSIONS

We have presented an approach to guide the generation app user

flows (sequence of user interactions) for testing mobile apps. In our
previous work, we used SPIN to exhaustively explore the state space

of an app model. Now, we use never claims to generate significant
sequences of user interactions that allow the measurement of KPIs.
In this way, we separate the app model from the requirements
of the KPIs to be measured. In addition, we define pruning never
claims, which drastically reduce the state space explored and the
time elapsed.

The work is in an early stage, and many issues have to be ad-
dressed. First, we have to thoroughly study the KPIs and identify
the mandatory requirements for the test cases. In addition, we have
to define a specification language for the KPIs requirements, in such
a way the developer can easily relate the mandatory requirements
with the app under test, and also define new requirements. Second,
we have to produce test cases with specific user input data (e.g. text
input) and enriched with time information. Currently, we abstract
the input data and the time elapsed between user events. Given
the (possible infinite) set of user input data, we should determine
some kind of equivalence relation on input data, and use only a
representative subset of them. Similarly, the analysis of some KPIs
may require minimum or maximum time between events. Although
the view state machines can incorporate time information in tran-
sitions, it is not currently considered in the generation phase. A
timing analysis can help us to diminish the app user flows to those
having a minimum/maximum duration or time between events.
Finally, we have to fully integrate the guided generation of app user
flows in the TRIANGLE testing framework. We have to consider
issues such as the (semi) automatic generation of the app model,
that can be based on the analysis of the app or real user traces,
and the analysis of the traces produced when the test cases are
executed.

REFERENCES

[1] C.Chang and N. Lin. A constraint-based framework for test case generation in
method-level black-box unit testing. Journal of Information Science and Engineer-
ing, 32(2):365-387, 2016.

A.R. Espada, M. M. Gallardo, A. Salmerén, and P. Merino. Runtime verification of
expected energy consumption in smartphones. In Proc. of the 22nd Int. Symposium
on Model Checking Software, pages 132-149. Springer International Publishing,
Aug. 2015.

A.R. Espada, M. M. Gallardo, A. Salmerén, and P. Merino. Using model checking
to generate test cases for android applications. In Proc. 10th Workshop on Model
Based Testing, volume 180 of EPTCS, pages 7-21. Open Publishing Association,
2015.

A.R. Espada, M. M. Gallardo, A. Salmeroén, and P. Merino. Performance Analysis
of Spotify® for Android with Model Based Testing. Mobile Information Systems,
2017:14, 2017.

G. Holzmann. The SPIN Model Checker : Primer and Reference Manual. Addison-
Wesley Professional, Sept. 2003.

N. Williams, B. Marre, P. Mouy, and M. Roger. Pathcrawler: Automatic generation
of path tests by combining static and dynamic analysis. In Proc. of the 5th European
Dependable Computing Conference, pages 281-292. Springer-Verlag, Apr. 2005.

	TRIANGLE Project-ScientificPaper-copyright-page
	p192-panizo
	Abstract
	1 Introduction
	2 The TRIANGLE project
	3 Guiding the generation of app user flows
	4 Conclusions
	References

