
H2020-ICT-688712

Project: H2020-ICT-688712

Project Name:
5G Applications and Devices Benchmarking (TRIANGLE)

Deliverable D3.4

Report on the implementation of testing
framework Release 3 and specification of

testing framework Release 4

Date of delivery: 31/03/2018 Version: 1.0
Start date of Project: 01/01/2016 Duration: 36 months

TRIANGLE PU ii

Deliverable D3.4
Report on the implementation of testing framework
Release 3 and specification of testing framework

Release 4
Project Number: ICT-688712

Project Name: 5G Applications and Devices Benchmarking

Project Acronym TRIANGLE

Document Number: ICT-688712-TRIANGLE/D3.4

Document Title: Progress report on the testing framework Release 3 and
specification of Release 4

Lead beneficiary: Universidad de Málaga

Editor(s): Almudena Díaz Zayas (Universidad de Málaga)

Authors: Keysight Technologies Belgium (Michael Dieudonne),
Keysight Technologies Denmark (Andrea Cattoni,
German Corrales Madueño, Marek Rohr), Universidad
de Malaga (Alberto Salmerón, Almudena Díaz, Pedro
Merino, Cesar A. García, Laura Panizo Jaime, Bruno
García, Guillermo Chica, Verónica Tapia, Maria del Mar
Gallardo), Redzinc Services Limited (Jeanne Caffrey,
Donal Morris, Ricardo Figueiredo, Terry O'Callaghan,
Pilar Rodríguez), DEKRA Testing and Certification S.A.U
(Carlos Cárdenas, Janie Baños, Oscar Castañeda, J.C.
Mora), Quamotion (Frederik Carlier, Bart Saint Germain),
TNO (Lucía D’Acunto, Piotr Zuraniewski, Niels van
Adrichem

Dissemination Level: PU

Contractual Date of Delivery: 31/03/2018

Work Package Leader: Universidad de Málaga

Status: Final

Version: 1.0

File Name: TRIANGLE_Deliverable_D3.4_Final.docx
Abstract
This deliverable provides the description of the third release of the TRIANGLE testbed. The
most important feature of this release is the support of the execution of certification campaigns
and the computation of the TRIANGLE mark.

Keywords
Architecture, workflow, deployment, orchestration, test case, portal, measurements tools,
RAN, EPC, UEs

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU iii

Executive summary

This document is the fourth deliverable of WP3. WP3 is responsible for the development of the
testing framework in TRIANGLE. Testing framework covers all the software,
coordination/sequencing that controls & connects the test infrastructure. It oversees handling
and converting the end user test requests into actionable steps within the software and
hardware portion of the testbed.

The document describes the testing framework of the third Release (Rel-3) of the testbed. The
testbed architecture, introduced in D3.2, has been consolidated in this new Release. The new
features are the natural evolution of the testing framework components identified in D3.2.

The main feature introduced in the Rel-3 of the testbed is the execution of certification
campaigns, which involves also the computation of the TRIANGLE mark. The certification
campaigns are based on the execution of the test cases specified in D2.2. A test case defines
the conditions of the test, the measurements that to be collected and the app user flow which
will be used to stimulate the feature under test. The current version of the testbed supports the
execution of the test cases specified in three app testing domains: App User Experience (AUE),
Device Resource Usage (DER) and Apps Energy Consumption (AEC); and in two domains of
mobile device testing: Device Energy Consumption (DEC) and User Experience with Reference
Apps (DRA). A complete list of the test cases currently supported is provided in Annex I of this
document.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU iv

Contents

1 Introduction ... 2

2 TRIANGLE testbed architecture .. 5

3 Interface and visualization (Portal) .. 7

3.1 Test cases supported ... 7

3.2 Traffic capture .. 8

3.3 Allow upload of Powershell scripts as App User Flow ... 9

3.4 Enabling/disabling remote screen .. 11

3.5 Task ID... 12

3.6 Certification campaign ... 12

3.7 TRIANGLE mark and spider diagram .. 14

4 Orchestration... 16

4.1 Orcomposutor .. 16

4.2 Test Automation platform (TAP) .. 16

4.3 New features in the Quamotion WebDriver ... 27

5 Measurements and data collection ... 28

5.1 KPIs computation ... 28

5.2 Metrics and mark computation ... 30

5.3 Instrumentation library ... 31

5.4 Measurement calculation without using the instrumentation library (UMA) 31

5.5 New features in DEKRA TACS Performance Tool (DEKRA) 31

6 RAN (Radio Access Network) ... 33

7 EPC ... 34

8 Transport ... 35

8.1 Cloud infrastructure description ... 35

8.2 MANO – Management and Network Orchestration ... 43

9 UE (User Equipment and accessories) ... 51

9.1 Supported UEs ... 51

10 Local applications and Servers (TNO) .. 52

10.1 DANE Local applications and Servers (TNO) .. 52

10.2 Web Client ... 54

10.3 Metrics Database ... 55

10.4 Metrics Visualisation .. 56

10.5 Fake client swarm .. 56

10.6 Obtaining logs .. 57

10.7 Default port assignments ... 57

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU v

11 Extensions and new features .. 58

11.1 Booking system .. 58

11.2 Remote screen ... 60

11.3 Power shell support ... 62

11.4 iOS support .. 63

11.5 Model-based testing: Automatic App model extraction .. 63

12 Internal test experiment... 69

13 TRIANGLE testbed Release 4 specifications .. 70

14 References .. 71

15 Annex 1: Test cases supported in Release 3. ... 72

15.1 Apps User Experience (AUE) .. 72

15.2 Mobile Devices Energy Consumption (DEC) ... 73

15.3 Apps Energy Consumption (AEC) ... 74

15.4 Mobile devices User Experience with Reference Apps Test Specification (DRA) 75

15.5 Applications Device Resources Usage (RES) ... 76

16 Annex 2: Measurements points (Instrumentation library) .. 78

16.1 Common Services .. 78

16.2 Content Distribution Streaming Services ... 78

16.3 Live Streaming Services .. 81

16.4 Social Networking .. 82

16.5 High Speed Internet ... 85

16.6 Virtual Reality ... 86

16.7 Augmented Reality ... 87

16.8 Gaming .. 88

17 Annex 3: Robotic Arm Remote Control Interface .. 90

18 Annex 4: OpenStack API access .. 96

19 Annex 5: Sample work-flow ... 99

19.1 Bootstrapping environment .. 99

19.2 Preparing descriptors ... 100

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU vi

List of Figures
Figure 1 High-Level architecture of the testbed ... 2

Figure 2 Control and management entities of the testbed ... 6

Figure 3 Testbed workflow ... 6

Figure 4 The Portal identifies the available test cases and presents a description for each one
 ... 7

Figure 5 Measurement points required to compute the measurements specified in the test
cases .. 8

Figure 6: ‘Capture Traffic’ selector ... 8

Figure 7: Display 'Capture Traffic' selection ... 9

Figure 8: Allow uploading PowerShell files (.ps1) .. 9

Figure 9: Display file content instead of a table with a parsed JSON file in Campaign 10

Figure 10: Display file content instead of a table with a parsed JSON file in App Test Case .. 10

Figure 11: Disabled 'View screen feed' in Standard Campaign ... 11

Figure 12: Enabled 'View screen feed' in Custom Campaign .. 11

Figure 13: Show 'Execution Task ID' in Campaign Execution .. 12

Figure 14: Show 'Certification' type in Campaign creation ... 12

Figure 15: Show Campaign type in Campaigns view ... 13

Figure 16: Show Campaign type in each Campaign and remove Scenario and Control Traffic if
type 'Certification’ ... 13

Figure 17: Show Campaign type in each Campaign and show Control Traffic if type 'Custom’
 ... 14

Figure 18 TRIANGLE mark .. 14

Figure 19 MANO instrument setup ... 20

Figure 20 Putty key conversion .. 21

Figure 21 Execute remote command ... 24

Figure 22 Execute remote command known host .. 25

Figure 23 Execute remote command to Host with known host .. 26

Figure 24 MANO sample test plan ... 27

Figure 25: Configuration parameters on the Test Case Labeller step 29

Figure 26: Configuration parameters on the RES step. All steps include the same basic settings.
 ... 30

Figure 27: Additional settings on the AUE step .. 30

Figure 28 Snippet for generating measurement points with the same format that the
instrumentation library .. 31

Figure 29: Architecture overview .. 36

Figure 30: Hypervisor configuration through virt-manager ... 37

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU vii

Figure 31: Overview of nodes deployed through MAAS, cloud-related nodes are initiated and
controlled through Juju. .. 37

Figure 32: Network overview of networks managed by lib-virt ... 39

Figure 33: Juju model describing functional elements and their connections 41

Figure 34 OSM mapping to ETSI NFV MANO ... 44

Figure 35: State of an OSM VM after OSM installation .. 45

Figure 36: OSM GUI sample screenshot ... 48

Figure 37: Instantiation ... 49

Figure 38: Logging and debug via OSM GUI ... 49

Figure 39: Logging and debug via OSM GUI ... 50

Figure 40 The New Reservation Page allows a user to select a slot time to use the Portal
Testbed .. 59

Figure 41 Calendar interface. It shows the reservations made. Clicking on any day will take you
to the New Reservation Page. .. 59

Figure 42 View of the screenshot feed feature provided by Quamotion. 61

Figure 43 Model extraction overview .. 64

Figure 44. Universal Music Player model ... 66

Figure 45: Image creation (part 1) .. 100

Figure 46: Image creation (part 2) .. 101

Figure 47: VNFD creation (adding VNDF 1) ... 101

Figure 48: VNFD creation (name and ID) ... 102

Figure 49: VNFD creation (connectivity) .. 102

Figure 50: VNFD creation (VDU details) .. 102

Figure 51: VNFD creation (VNF connectivity) .. 103

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU viii

List of Tables
Table 1 List of TRIANGLE features .. 3

Table 2 MANO instrument setup .. 19

Table 3 Test step MANO setup .. 21

Table 4 Test step Contact MANO .. 22

Table 5 Test step Set up Network Service Record .. 22

Table 6 Set up Resolve hostnames ... 22

Table 7 Test step Execute remote command ... 23

Table 8 Execute remote command known host ... 24

Table 9 Execute remote command to Host with known host ... 25

Table 10: admin-openrc5.sh... 42

Table 11: LXD containers after OSM installation ... 45

Table 12: OSM Client installation, configuration and verification ... 46

Table 13: OSM Client modifications ... 46

Table 14: Using OSM client with GUI generated descriptor may cause an error 47

Table 15 Current status of devices integrated into the testbed .. 51

Table 16 Messages from MPEG-SAND protocol ... 52

Table 17 List of PowerShell scripts used in the Quamotion Docker deployment 62

Table 18 List of PowerShell scripts used in the Quamotion Docker deployment 63

Table 19 Model extraction - Configuration ... 67

Table 20. Model extraction - Results .. 68

Table 21: Identity Service API Request Token ... 96

Table 22: Identity API Service Authentication Token Response .. 96

Table 23: Sample client VNFD ... 103

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU ix

List of Abbreviations
AUT App Under Test

AP Access Point

APNet Antennas, Propagation and Radio
Networking

BER Bit Error Rate

BLER Block Error Rate

BS Base Station

CAPEX CApital EXpenditure

CDMA Code Division Multiple Access

CFO Carrier Frequency Offset

CO Confidential

CP Cyclic Prefix

CR Cognitive Radio

CRS Cognitive Radio Systems

CSI Channel State Information

CSMA Carrier Sense Multiple Access

C2X Car-to-Anything

D Deliverables

DL Downlink

D2D Device-to-Device

DMRS Demodulation reference signal

DRX Discontinuous Reception

DTX Discontinuous Transmission

DUT Device Under Test

EIRP Effective Isotropic Radiated
Power

EIT European Institute for Innovation
and Technology

E2E End-to-End

EVM Error Vector Magnitude

FDD Frequency Division Duplex

FD-MIMO Full-Dimension MIMO

FEC Forward Error Correction

FR Frequency Response

GPRS General Packet Radio Service

GSM Global System for Mobile
communications

HARQ Hybrid Automatic Repeat Request

ICI Inter-Carrier Interference

ICT Information and Communications
Technology

IEEE Institute of Electrical and
Electronics Engineers

IMT International Mobile
Communications

IP Intellectual Property

IPR Intellectual Property Rights

IR Internal report

ITU International Telecommunication
Union

ITU-R International Telecommunication
Union-Radio

KPI Key Performance Indicator

LAN Local Area Network

LOS Line of Sight

LTE Long Term Evolution

LTE-A Long Term Evolution-Advanced

L2S Link to System

M Milestones

Mbps megabits per second

Mo Month

MA Multiple Access

MAC Medium-access Control

MGT Management

MIMO Multiple-Input Multiple-Output

MMC Massive Machine Communication

M2M Machine to Machine

MSE Mean Squared Error

NLOS Non line of Sight

OFDM Orthogonal Frequency Division
Multiplexing

OPEX Operational Expenditure

PA Power Amplifier

PAPR Peak-to-Average-Power-Ratio

PC Project Coordinator

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU x

PHY Physical Layer

PU Public

QAM Quadrature Amplitude Modulation

QAP Quality Assurance Plan

QMR Quarterly Management reports

QoE quality of experience

QoS Quality of Service

RACH Random Access Channel

RAN Radio Access Network

RAT Radio Access Technology

RF Radio Frequency

R&D Research and Development

RRM Radio Resource Management

RTD Research and Technological
Development

RTT Round Trip Time

SDR Software Defined Radio

SINR Signal to Interference and Noise
Ratio

SRS Sounding Reference Signal

T Task

TDD Time Division Duplex

TDMA Time Division Multiple Access

TRX Transmitter

TTI Transmission Time Interval

UE User Equipment

UL Uplink

UMTS Universal Mobile
Telecommunications System

USRP Universal Software Radio
Peripheral

V2V Vehicle-to-Vehicle

V2X Vehicle-to-anything

WCDMA Wide Code Division Multiple
Access

WLAN Wireless Local Area Network

WP Work Package

WPAN Wireless Personal Area Networks

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 2/104

1 Introduction
The general architecture of the testbed introduced in D3.1 has been consolidated in Release 3.

Figure 1 High-Level architecture of the testbed

TRIANGLE project is devoted to the testing and benchmarking of mobile applications and
devices. The testbed provides a high-level access based on a Web Portal which offers an
intuitive interface for the definition and execution of the testing campaigns. For advanced users
interested on the configuration of the low-level parameters of the testing scenarios the testbed
offers an additional access based on TAP (Testing Automation Platform), a programmable
sequencer of actions whose plugins expose the configuration and control of the instruments and
tools integrated into the testbed.

WP2 has identified a set of uses cases, which is used to classify the different apps. This
classification is required to test apps and devices programmatically. In each use case, WP2 has
identified the most relevant and common features provided by apps. In each feature, WP2 has
specified a test case where we measure the performance of such feature. This approach
provides a common framework for the certification of applications. The testbed enables also the
definition of custom campaigns to test additional features offered by the applications. More
specifically, through Release 3 of the Portal, it is possible to define three different testing
campaigns:

 Certification campaigns. A certification campaign executes all the test cases
that apply to the uses cases and the features supported by the app. The uses
cases and the features are configured when the application is uploaded to the
Portal. No additional configuration is needed.

 Standard campaigns. When users opt for standard campaigns they can select
between the test cases defined for the uses cases and features supported by
app. The user can also configure the scenario and the device used during the

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 3/104

campaign. Remote screen and traffic capture are available during the execution
of these campaigns.

 Custom. Users can define their own test campaign providing a power shell script
which replays the feature under test and can select the scenario and the device.
Remote screen and traffic capture are available during the execution of these
campaigns.

The most relevant features included in Release 3 of the testbed are the following:

 KPIs computation: Raw measurements collected by the software tools and instruments
integrated into the testbed are post-processed to compute the KPIs specified in D2.2.
The computation of these KPIs has been implemented as test steps in TAP. These test
steps are called by the orchestrator of the testbed once the test case has been executed
and the measurements are available.

 Triangle mark computation. The ETL module maps the KPIs computed into MOS
values. One MOS value is provided per domain and the aggregation of all of them is
used to obtain the TRIANGLE mark.

 Certification campaigns. The user selects per use case the different features
supported by the application. Using this information together with the rules standardized
in D2.2, the orchestrator of the testbed selects the test cases that the application must
pass to obtain the TRIANGLE mark.

 Remote screen. The possibility of visualizing what is happening in the device during the
execution of the tests is a common request from OC1 and OC2 open callers. This feature
is now available through the Portal for custom and standards campaigns.

 Powershell support for the definitions of the app user flows. This new approach
provides greater level of flexibility for app user flows.

 Additional security. The test runner (app user flow execution) and the Quamotion
WebDriver server are now deployed in Docker containers isolated to avoid malicious
attacks to the integrity of the testbed. This was a very important achievement in order to
support Powershell.

For a better understanding of the testbed evolution, we summarized the main features in the
following table:

Table 1 List of TRIANGLE features

Testbed
features

 Components Rel Comments

Testbed
accessibility

Portal R2 Main entry point of the testbed

 Web Reporting Tool R2 Raw measurements visualizer

 Booking System R3

 Test Automation Platform
(TAP)

R2 Testbed access for advanced users

Testbed usage Certification campaigns R3

 Standard campaigns R2

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 4/104

 Custom campaigns R2

 Researcher campaigns R2 Modification of the templates and
configuration of low level parameters

Results Raw results R2

 KPIs R3

 MOS R3

 Triangle mark R3

Device automation Quamotion Webdriver R1

 Powershell support R3 App users flows are defined via powershell
scripts

Monitoring tools TestelDroid R1 Android applications which enables traffic
capture at the UE

DEKRA Performance Tool R1 Multiplatform performance monitoring tool:

device resources (RAM, CPU, GPU), traffic
statistics, reference applications

Instrumentation library R2 Defines a set of measurements points to
correlate the measurements collected with

the actions performs by the applications
under test

Measurements
post-processing
and storage

ETL Framework R3 MOS scoring per domain, aggregated MOS

KPIs computation R2 KPIs specified in it D2.2 are computed after

the execution of each test case and stored in
the general database

 General database R2

Backhaul Emulated Impairments R3 Core interfaces and servers connections

 SDN R3 Servers connective

 VNF R3 Servers deployment

 Openstack R3 Servers deployment

 Commercial EPC (Polaris) R2

Instruments UXM R1 LTE-A Pro base station emulator

 N6705B Power Analyzer R1

Devices Android devices R1

 NB-IoT devices R2

 iOS devices R3

Additional features
S1 Interface R1 eNB Emulator is capable of connecting to

commercial core networks

S1 handover R2

 Robotic arm R2

 GPS emulation R2

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 5/104

 Model based testing R2

 Remote pcap R2 Enables the capture of traffic in any of the
interfaces.

 Heterogeneous access R3

 Remote screen R3 VNC access to the app and device under test

2 TRIANGLE testbed architecture
The control and management components identified and implemented in Release 2 (see Figure
2) and the workflow of the testbed (see Figure 3) have not been modified. The new features of
the testbed have been introduced in the components identified in the existing architecture.
These new features are described in the following sections.

As a reminder, the main testbed components are briefly described below.

Portal: High level end users access the TRIANGLE Testbed through the Portal. In this Portal
they can upload new apps (if they are app developers), or declare the devices they have sent
to the Testbed (if they are device makers). In addition, they will have to declare the features or
capabilities of their apps or devices (implementation statements). These features will define
what can be tested through experiments, or which tests specifications will be applicable when
they opt for certification. In addition to the implementation statements, end users will have to
provide additional information.

Users can then define their own campaigns to test certain features of their app or device. For
experimentation campaigns, users can configure have some high-level options: the test
scenario, the device on which the test will be carried out (for app developers), the reference app
to test (for device makers), and a subset of the applicable KPIs. Most of the information required
to execute a test, such as how to measure certain KPIs, should have been provided earlier.

Orcomposutor: Once all the required information has been entered in the Portal, the user can
run experiments or certifications. In both cases the workflow is similar. The first step would be
to take the information entered and turn it into executable TAP test plans. This is the task of the
test plan Orcomposutor. The Orcomposutor is also aware of which KPIs are going to be
measured with each of the generated TAP test plans.

Depending on the number of selected options, or the test specifications that the product must
pass for certification, the Orcomposutor will generate the applicable test plans. For instance, for
certification, the test specifications will include testing the same features/KPIs under different
network scenarios. For experimentation, the number of test plans will depend on the subset of
features/KPIs and other options selected by the user. To create the required TAP test plans,
the Orcomposutor uses pre-defined test plan templates. For an app test, the body of the test
plan typically includes replaying the user actions contained in an app user flow provided by the
app developer.

ETL framework: A specialized ETL (Extract, Transform, Load) will perform the mapping
between KPIs and MOS values and will general the final TRIANGLE mark for certification
campaigns. A MOS value is computed per domain. A final MOS aggregation is done to provide
the TRIANGLE mark.

The computed KPIs are stored in the general database of the testbed. The ETL framework will
use these values.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 6/104

The computed KPIs and MOS values will be available for the user in the Portal, along the raw
measurements.

Figure 2 Control and management entities of the testbed

Figure 3 Testbed workflow

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 7/104

3 Interface and visualization (Portal)

3.1 Test cases supported
The Portal offers full support for the test cases defined in D2.2 for the App User Experience
(AUE) domain, the Device Resources Usage (RES) domain and the App Energy Consumption
(AEC) domain.

Figure 4 The Portal identifies the available test cases and presents a description for each one

As shown in Figure 5, the Portal also provides a list of the measurements points that must be
included in the source code of the application under test to obtain the measurements specified
in the test cases.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 8/104

Figure 5 Measurement points required to compute the measurements specified in the test cases

3.2 Traffic capture
Traffic capture can be computational intensive and can interfere with the measurements. This
feature is configurable through the added field ‘Capture Traffic’ in the “Create Campaign” form.

When the user creates a custom campaign or standard campaign, the user can enable or
disable the traffic capture. For the certification campaigns this option is not available.

Figure 6: ‘Capture Traffic’ selector

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 9/104

Figure 7: Display 'Capture Traffic' selection

3.3 Allow upload of Powershell scripts as App User Flow
Allow PowerShell files (.ps1) to be uploaded as App User Flow. In the previous version only
JSON files were supported.
Some views has been modified to show the file content instead of just a table with the parsed
JSON file.

Figure 8: Allow uploading PowerShell files (.ps1)

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 10/104

Figure 9: Display file content instead of a table with a parsed JSON file in Campaign

Figure 10: Display file content instead of a table with a parsed JSON file in App Test Case

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 11/104

3.4 Enabling/disabling remote screen
Remote screen is one of the new features introduced in Release 3. The Portal enables the
activation/deactivation of this new feature for standard and customs campaigns.

Figure 11: Disabled 'View screen feed' in Standard Campaign

Figure 12: Enabled 'View screen feed' in Custom Campaign

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 12/104

3.5 Task ID

Show ‘Execution Task ID’ when displaying the Campaign Execution. This is the same ID used
in the OML visualizer to identify the graphs corresponding to the execution.

Figure 13: Show 'Execution Task ID' in Campaign Execution

3.6 Certification campaign
The type ‘Certification’ has been added in the “Create campaign” form. All the views have been
updated to show the information of this new type of campaign.

Figure 14: Show 'Certification' type in Campaign creation

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 13/104

Figure 15: Show Campaign type in Campaigns view

Figure 16: Show Campaign type in each Campaign and remove Scenario and Control Traffic if

type 'Certification’

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 14/104

Figure 17: Show Campaign type in each Campaign and show Control Traffic if type 'Custom’

3.7 TRIANGLE mark and spider diagram
The Portal displays the Triangle Mark and a spider diagram with the score obtained in each one
of the domains currently supported: App User Experience, App Device Resources Usage and
App Energy Consumption.

Figure 18 TRIANGLE mark

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 15/104

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 16/104

4 Orchestration

4.1 Orcomposutor

Many improvements and extensions have been implemented in the Orcomposutor, in order to
give support for new the features of the TRIANGLE testbed, to improve the performance of the
workflow and to facilitate the error handling and debugging, both for the experimenters and the
maintainers of the system. The updates implemented include:

- Support for dynamic scenarios and the new TAP master template: The new
template requires a different set of external parameters. For example, to give support
for dynamic scenarios it is necessary to use several testplan references: one for
configuring the initial network conditions and up to five testplans that are executed
randomly simulating the changing conditions of the network.

The new template also delegates the configuration of the device under test (for example,
it is possible to use the same master template for Android and iOS devices) and other
instruments to specific testplan references. The information about which testplans are
required depending on the scenario and test conditions have been moved to several
files in yaml format, which allow easier customization without the need to edit the source
code of the Orcomposutor.

- Multiple executions for all available domains: The Orcomposutor is now able to
execute each test case multiple times with different configurations for all the available
domains. The results generated by each of these executions are uploaded to the
TRIANGLE Portal organized in different folders inside the generated zip files.

- KPI extraction: The Orcomposutor is now able to automatically execute the
corresponding KPI extraction steps for any given domain. These KPIs are used during
the TRIANGLE Mark calculation, and are uploaded with the other generated
measurements to the Portal.

- TRIANGLE Mark calculation: Once the campaign has finished and all the KPIs have
been generated the Orcomposutor will initiate the ETL processing, obtaining the
TRIANGLE mark and all the intermediate results of the test. These results will be
uploaded to the Portal.

- TAP log upload: To facilitate the debugging of failed campaign executions the logs
generated by TAP are now uploaded to the Portal alongside the results. Using these
logs the experimenters can have a better understanding of the issues encountered
during the execution.

4.2 Test Automation platform (TAP)

4.2.1 TAP8 migration. New features in TAP8
TAP8, beyond enhanced usability and stability, comes with new features and capabilities which
were developed to further improve the TRIANGLE testbed.

Examples of such new features are:

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 17/104

- References to Test plans can now be used as external parameters, as well as
parameters inside the referenced test plans

- Plugins are now stored in custom folders in the TAP installation directory, defined by the
plugin developer, to reduce file conflicts between plugins and facilitate installation and
uninstallation of plugins.

- Referenced test plans can now have relative paths compared to the master test plan,
for easier porting from one test machine to another.

- REST API for remote controlling of a TAP execution.

4.2.2 New TAP test plan master template
For the first time, the testbed fully embraces TAP8 and the new features it includes. Naturally,
the test plan master template has been overhauled with the new capabilities to further enhance
the testbed flexibility and increase capabilities.
In summary, the new master template includes:

- Setting of test plan reference as external parameters, to be called via command line
- All parameters of these test plan reference are set as external parameters within these

test plans, so that they can be set again as external parameters in the master template
- Simultaneous capture of

o Cellular statistics and device resource usage using the TACS4 agent and
DEKRA TAP plugin, no matter the application flow.

o Testeldroid logs (delivers PCAP files useful for traffic analysis).
o Android Logcat (provides Android debug logs useful for all application domains).
o Power consumption of the DUT via USB as well as fake battery connector.

The overall master template follows the high-level structure below:

1. Test case labeler
2. Instruments configuration

1. UXM configuration
2. Power analyzer configuration
3. Other instruments configuration

3. Connect the DUT
4. Configure the DUT
5. Initialization of the TACS4 agent

1. Configure the device automation profile to idle
6. Test body (repeat over X iterations)

1. Test execution (parallel execution)
A. Application flow

1. Start of non-blocking measurements (Testeldroid, WebDriver)
2. Execution of blocking measurements (parallel)

A. TACS4 test run
B. App flow run (Quamotion flow execution)

3. Stop of non-blocking measurements
B. Network scenarios

1. Subscenario 1
2. Subscenario 2
3. Subscenario N

2. Retrieve data per iteration

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 18/104

3. Connectivity clean-up
7. Retrieve data per test case

Notes:

- The bullets marked 1. or 2. are executed successively, whereas bullets A. and B. are
running simultaneously (in parallel).

- Most of the bullets above are actually references to other test plans, meaning that the
template keeps its generic structure even if the nature of the DUT or test case changes

- The measurements are split into blocking (which will keep the test flow on hold until they
are completed) and non-blocking (which are started in a single step and run in the
background). For this reason, the blocking measurements are all combined in a parallel
loop, to avoid blocking the rest of the test case logic.

- The center-core test step which dictates the actual duration of the test case still is the
Quamotion application flow (replay of a JSON file through the Quamotion plugin).
All other measurements or network scenario emulation are started before the app flow
replay starts, and are stopped right after it stops, as only measurements when the app
flow is running will be kept for post-processing.

4.2.3 TAP plugins

4.2.4 New version of DEKRA tool TAP plugin
From Release 2 onwards DEKRA has provided several updates of the DEKRA tool TAP plugin.
The plugin change log can be summarized with the following highlights:

 Support for TAP 8

 Contest Stall measurements (see section 5.5)

 GPU Usage measurements (see section 5.5)

 Robotic arm integration

 Minor bugs and other maintenance updates

The major upgrade has been the implementation of the TAP plugin for the integration of the
robotic arm platform [D3.2], which was implemented in the Release 2 timeframe, into the
Release 3 of the TRIANGLE testbed.

The robotic arm platform was implemented to meet the technical requirements derived from the
Virtual Reality, Gaming and Augmented Reality test specification, mostly on the ability to move
the device.

The implementation of the integration has consisted in two phases:

1. Development of a Remote-Control Interface service to expose all the capabilities of the
robotic arm platform.

2. Development of the TAP plugin as user of the Remote Control (RC) interface developed
in phase 1.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 19/104

Annex 3 provides more details on the specification of the Remote-Control Interface service.
That specification provides a complete view of the measurement capabilities available in
Release 3 of the TRIANGLE testbed.

4.2.5 MANO plugin

In this Section we describe in detail the Management and Network Orchestration (MANO) TAP
plugin. First, the instrument setting will be described, followed by the test steps, in the order
they typically appear in the test plan (when the order is relevant). For more information about
the MANO itself, the reader is encouraged to read Section 8.

4.2.5.1 The instrument

Table 2 provides item descriptions and default values needed to configure the MANO
instrument. See Figure 19 for a sample screen shoot.

Table 2 MANO instrument setup

Item Settings Description
Address 10.20.2.44 IP of MANO (points to cloud5)

Connection
timeout

20s Time to try connectivity

Domain name a.cloud5.morse.uma.es

Prefix “a” given by MANO, the rest is
configured at OpenStack DNS service. Will
be used by VMs instantiated through
MANO

Port 8008 MANO port for REST API (default)

Scheme https Forced by MANO configuration

Authentication
token

YWRtaW46YWRtaW4= MANO default credentials admin:admin
encoded in BASE64

Allow self-signed
certificates

YES Non-strict TLS check

Private keys See below See below

The “Private keys” section allows for adding the private keys which will be used to establish
secure connections with the Virtual Machines instantiated by MANO which will make sure that
the public key matching the private one is injected into the VM. The reference to that key must
be placed in Network Service Record json file in the "ssh-authorized-key" section. Moreover,
the private key must be in OpenSSH format. Please observe, that the most popular Windows
tool, i.e., putty key generator produces keys in its own format (ppk – putty private key) which is
not compatible with OpenSSH and needs to be converted by the putty key generator tool (see
Figure 20) and saved into a separate file (most often named id_rsa.pub, note that its counter-

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 20/104

part id_rsa commonly contains the private key which must remain secret). The path to this file
needs to be provided when configuring the MANO instrument in TAP (“private key path”).

Furthermore, the private key, when created, may be chosen to be protected by a passphrase
(one-time entered password which unlocks the key and allows its usage). If there is no
passphrase, the field “Pass phrase” in MANO TAP configuration should be left blank. If there is
a passphrase, it can be entered in the appropriate field, however, it will be stored in an insecure
way (in clear text) in the configuration.

Figure 19 MANO instrument setup

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 21/104

Figure 20 Putty key conversion

4.2.5.2 Test step MANO setup

This is a first and mandatory step in the test plan. Its primary function is to load the Network
Service Descriptors.

Table 3 Test step MANO setup

Step Setting Description
MANO setup Instrument Select which MANO instrument to use

 Network Service
Record file json file containing Network Service Descriptor

 Result Description

 Virtual machines
Names of VMs, constructed using entries in Network
Service Descriptor file. These names will be used to
construct FQDNs of the hosts.

 Id UUID of the Network Service Record

 JSON content Content of the Network Service Record file

 Comment Free-form data entry

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 22/104

4.2.5.3 Test step Contact MANO

Typically, a second step, although not mandatory. Makes REST call towards MANO to verify if
it is reachable.

Table 4 Test step Contact MANO

Step Result Description

Contact
MANO Comment Free-form

data entry

4.2.5.4 Test step - Set up Network Service Record

In this step, the MANO orchestrator is contacted to consume a Network Service Descriptor
(NSD) file and create the instances and the networks using the Virtual Infrastructure Manager
(an OpenStack cloud in our case). While sending the command towards MANO is fast (hence
the default 20s timeout should be sufficient), the full execution of this step, i.e., the state where
all the VMs and all the services are up and running, may take several minutes (for example, a
typical boot time of an Ubuntu 16.04 VM is about 3-4 minutes).

Note that the Network Service Record id is unique and no equally identified record should exist
(e.g., due to previous instantiations). If the MANO contains a Network Service Record identified
by the same id as the request, it will reject the message and the step will be aborted.

Table 5 Test step Set up Network Service Record

Step Setting Description
Set up Network Service
Record

Connection
timeout Time to try connectivity

 Result Description

 Comment Free-form data entry

4.2.5.5 Test step Resolve hostnames

This step contacts the MANO and retrieves the hostnames of the virtual machines it has created.

Table 6 Set up Resolve hostnames

Step Setting Description

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 23/104

Set up Resolve
hostnames

Connection
timeout Time to try connectivity

 Result Description

 Comment Free-form data entry

4.2.5.6 Test step Execute remote command

Execute an arbitrary command on an arbitrary (ssh-reachable) host. See Figure 21 for the
example.

Table 7 Test step Execute remote command

Step Setting Description

Execute remote
command

Host IP address or FQDN of the host on which the
command is to be executed

 ssh port Port on which sshd is listening

 Connection
timeout Time to try connectivity

 Connection retry
attempts Number of retries in case of timeout

 Command The command to be executed on the host to which
ssh session is established (as configured above)

 Command timeout
Timeout for the command which was executed
(understand as no output appears as a result of a
command)

 Username Username used for ssh session

 Password Password (if needed; may be empty is e.g., ssh keys
are deployed) for ssh session

 Result Description

 Regular
expression

REGEXP which will be used to process output of the
command. Uses stdout of the host to which ssh
session is established (as configured above) as its
input. In case of match, the test passes; otherwise it
fails.

 Comment Free-form data entry

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 24/104

Figure 21 Execute remote command

4.2.5.7 Test step Execute remote command known host

Execute an arbitrary command on MANO-instantiated host (must be ssh-reachable). Optionally,
two names of the (other) MANO-instantiated VMs can be provided as parameters. A typical
usage is “ping Host-2 from Host1”, see Figure 22 for such an example.

Table 8 Execute remote command known host

Step Setting Description

Execute remote
command known host Host IP address or FQDN of the host on which the

command is to be executed

 ssh port Port on which sshd is listening

 Connection
timeout Time to try connectivity

 Connection retry
attempts Number of retries in case of timeout

 Command
The command to be executed on the host to which
ssh session is established (as configured above).
Parameters’ usage is indicated by ‘{0}’ and ‘{1}’ tokens

 Command timeout
Timeout for the command which was executed
(understand as no output appears as a result of a
command)

 Parameter 1
(optional) Name of the MANO-instantiated VM

 Parameter 2
(optional) Name of the MANO-instantiated VM

 Username Username used for ssh session

 Password Password (if needed; may be empty is e.g., ssh keys
are deployed) for ssh session

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 25/104

 Result Description

 Command
preview Preview of the command to execute

 Regular
expression

REGEXP which will be used to process output of the
command. Uses stdout of the host to which ssh
session is established (as configured above) as its
input. In case of match, the test passes; otherwise it
fails.

 Comment Free-form data entry

Figure 22 Execute remote command known host

4.2.5.8 Test step Execute remote command to Host with known host

Execute an arbitrary command on an arbitrary host (must be ssh-reachable). Optionally, two
names of the MANO-instantiated VMs can be provided as parameters. An exemplary usage is
“ping Host-2 from Host-1”, see Figure 23 for such an example.

Table 9 Execute remote command to Host with known host

Step Setting Description

Execute remote
command to Host with
known host

Host IP address or FQDN of the host on which the
command is to be executed

 ssh port Port on which sshd is listening

 Connection
timeout Time to try connectivity

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 26/104

 Connection retry
attempts Number of retries in case of timeout

 Command
The command to be executed on the host to which
ssh session is established (as configured above).
Parameters’ usage is indicated by ‘{0}’ and ‘{1}’ tokens

 Command timeout
Timeout for the command which was executed
(understand as no output appears as a result of a
command)

 Parameter 1
(optional) Name of the MANO-instantiated VM

 Parameter 2
(optional) Name of the MANO-instantiated VM

 Username Username used for ssh session

 Password Password (if needed; may be empty is e.g., ssh keys
are deployed) for ssh session

 Result Description

 Command
preview Preview of the command to execute

 Regular
expression

REGEXP which will be used to process output of the
command. Uses stdout of the host to which ssh
session is established (as configured above) as its
input. In case of match, the test passes; otherwise it
fails.

 Comment Free-form data entry

Figure 23 Execute remote command to Host with known host

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 27/104

4.2.5.9 Test step Tear down Network Service Record

Typically the last step, however it is not mandatory. The MANO instrument is instructed to
terminate the instantiated Network Service Record. The Id of the NSR is read from a json file,
supplied in the Test step MANO setup

Step Setting Description
Tear down Network
Service Record

Connection
timeout Time to try connectivity

 Id UUID of the Network Service Record to be terminated.

 Result Description

 Comment Free-form data entry

4.2.5.10 Sample test plan

A sample test plan is delivered with the TAP plug-in (file ssh_NetworkServiceRecord
tri_test202.TapPlan along with the sample Network Service Descriptor (file
NetworkServiceRecord tri_test202.json).

Figure 24 MANO sample test plan

4.3 New features in the Quamotion WebDriver
The latest Quamotion WebDriver release contain several improvements to enable more
complex application flows. Gestures and actions to click, enter-text, swipe, get and set values
are now available for the all automation types (App, Device and Web automation).

Quamotion added the support to containerize ADB/USBMUXD, the Quamotion WebDriver and
the AppFlow execution. This has several advantages:

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 28/104

 Devices can be isolated:
On both ADB and usbmuxd level we can filter out the device communication. This
enables to expose only one device to the application flow scripts and avoid any
interference with other devices available on the testbed.

 Script execution can be isolated
Containers containing the Quamotion WebDriver and the Quamotion Runner are
provided to execute scripts in full isolation. This gives the best possible protection
against harming the TestBed infrastructure and prevents extraction of confidential
data/application from other users.

 Improved stability
By spinning new containers for each test the test environment is reset completely
(except for de physical device at this moment). Lab experiments shows a drastic
improvement of stability as each test start from a clean state.

5 Measurements and data collection

5.1 KPIs computation
The following features have been implemented:

- A generic data management framework (TriangleKpi.Core) that provides the basic
functionality required for the generation of the KPIs based on the raw data obtained
during the testplan execution.

- A set of TAP steps (grouped on the ‘Tap.Plugins.TriangleKpi’ plugin) that make use of
the core package for calculating the different KPIs defined for each of the available
domains.

5.1.1 TriangleKpi.Core
The TriangleKpi.Core package has been developed as a generic data management framework,
and, as such, does not have any dependency with the TAP engine or any other component of
the TRIANGLE testbed. The framework is based on the concept of Pipelines, which consist on
a collection of components that are executed in order, transforming the data in different steps
until a set of results can be generated. Each component (except for the Processors, which
generate Results) produce a list of StructuredData, which encapsulate a table of information,
and these StructuredDatas can be used as input for one or more different Processors. The
available components for use on the Pipelines are:

- Loaders: Loaders are the starting point of the Pipeline. These components can be used
to obtain one or more StructuredDatas from different sources. The Core package
includes the CsvLoader, that can extract the data from CSV files. Developers can create
custom Loaders by implementing the ILoader interface or extending the Loader base
class.

- Parsers: Parsers take a set of input StructuredData, which can be generated by Loaders
or by previous Parsers, manipulate the data contained in them, and generate one or
more StructuredDatas that can be feed to another Parsers or to Processors. The
manipulations available allow the modification or removal of existing rows and columns
of the table, or the generation of new elements based on the existing information.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 29/104

- Processors: Processors generate results by using the information contained in the input
StructuredDatas. For example, AverageProcessor will report a result for every column
in the input, with the average of the data.

Using this architecture, the developer can define custom Pipelines for generating different
results.

5.1.2 Tap.Plugins.TriangleKpi
The TriangleKpi tapplugin contains a set of test steps that can be used for generating the set of
KPIs defined for each domain, using the results generated by the previous campaign execution
as source. This plugin also defines an additional Loader based on the interface defined on the
Core package: TapDataLoader can generate the initial StructuredData for the Pipelines by
querying a set of data from the TAP’s result database.

Prior to the execution of the KPI extraction steps the results generated by a testplan execution
by using the ‘Test Case Labeler’ step must be labeled. This step is executed at the beginning
of each campaign run and provides the basic information that TapDataLoader requires for
loading the desired results.

Figure 25: Configuration parameters on the Test Case Labeller step

Each step exposes a similar set of configuration parameters:

- The basic settings include the Test Case id and network scenario of the testplan.

- The Test Case, Campaign and Test Plan sections can be used to define associated
metadata for the generated KPIs.

- The Input / Output section defines the input database and optional ETL database: The
steps can save the generated KPIs and metadata directly into an ETL database, or only
as standard TAP results.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 30/104

-
Figure 26: Configuration parameters on the RES step. All steps include the same basic

settings.

- Additionally, some steps may require additional data to perform the required
calculations: For example, the App User Experience step calculates KPIs based on the
resolution used by the application (for example, during video playback or gaming). In
these cases, the calculation is performed using 4k as the maximum resolution by default,
but it is possible to specify the maximum resolution of the DUT for generating these MOS
values using more realistic information.

-
Figure 27: Additional settings on the AUE step

- Each of the provided steps defines a custom Pipeline that is used to generate the desired
KPIs

5.2 Metrics and mark computation
For the calculation of the TRIANGLE Mark the project is following the process described in
section 4 of deliverable D3.3 - Testing and reporting software tools. After each successful
testplan execution the Orcomposutor will make use of the steps defined in the previous section
to extract all the available KPIs for the different domains. Once all the required testplan
executions for the campaign have been completed successfully the Orcomposutor starts the
processing.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 31/104

5.3 Instrumentation library
A new version of the instrumentation library has been delivered in time for Release 3 of the
testbed. This new version provides measurement points to compute all the KPIs specified in the
test cases defined in D2.2 and also support the definition of custom measurements points. App
Annex 2 includes a list of all the measurements supported in Release 3.

5.4 Measurement calculation without using the instrumentation library (UMA)
In case it is not possible to use the Instrumentation Library on your application (for example,
because it has been developed using the Android NDK or it is not possible to include external
libraries), app developers can still instrumentalize their applications and take advantage of the
automatic measurement calculation provided by the TRIANGLE testbed. This is possible by
writing messages that follow the same format as the messages generated by the
instrumentation library, and generating them at the same situations in which a method from the
library would be included.

For example, the following snippet could be used for generating the required measurement point
at the end of an FTP download in an Android NDK application:

Figure 28 Snippet for generating measurement points with the same format that the
instrumentation library

Where “\t” corresponds to the Tab character. The message that corresponds to each of the
supported measurement points can be seen on the 'Measurement point methods’ section on
the documentation of the specific Instrumentation Library for each operating system, as
“Generated message”.

5.5 New features in DEKRA TACS Performance Tool (DEKRA)

There have been two major features included in Release 3 provided by the DEKRA
Performance Tool component:

 DRA Content Stall measurements

 RES GPU Usage measurements

In the scope of DRA test specification [D2.2_AP6], Content Distribution Streaming Reference
App use case and more specifically Content Stall KPI, reporting the percentile curve (a.k.a CDF)
as KPI summarization was specified for the TRIANGLE Mark scoring. The ability to collect the

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 32/104

measurements for Content Stall KPI resides in the DEKRA Performance Tool component. In
Release 2, even though the DEKRA Tool internally measured every Content Stall instance and
its duration, only average and maximum values were exposed to the TRIANGLE test bed. In
Release 3, all the Content Stall instances as measured by the DEKRA Tool are now exposed
and made available to the test bed so that the ETL component can compute the required KPI
summarization (i.e., percentile curve) which is necessary to provide support for the TRIANGLE
mark scoring process.

In the scope of RES test specification [D2.2 AP5], reporting the device GPU usage was
specified. In Release 3 the DEKRA Performance Tool is able to collect GPU Usage from Android
devices. That new measurement capability has been integrated into the TRIANGLE test bed
thus completing the full coverage of the RES tests specification.

The device interface that the DEKRA Tool uses for reading the GPU load is "/sys/class/kgsl/kgsl-
3d0/gpubusy", which reports the total and busy cycles DEKRA Tool uses to calculate the GPU
usage: /sys/class/kgsl/kgsl-3d0/gpubusy reports two integers g0and g1. The actual load
as a percentage can be calculated as (g0/g1*100).

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 33/104

6 RAN (Radio Access Network)
No new features in the UXM.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 34/104

7 EPC
EPC has been updated to Release 13 which includes support for NB-IoT.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 35/104

8 Transport
This section describes the orchestrated cloud platform delivered by TNO to the TRIANGLE
testbed. It consists of the two main parts: The Orchestrator and the Virtual Infrastructure
Manager.

The Management and Network Orchestration (MANO) stack allows for rapid deployment of
Virtualized Network Functions (VNFs), their flexible configuration, lifecycle monitoring and
decommissioning in order to automatically operate a potentially complex Network Service (NS).
A model driven approach is taken to describe VNFs and NSs. MANO enhances interoperability
with other components in the system such as Virtual Infrastructure Managers (VIMs) where the
(virtualized) functions are deployed. To allow these deployments, VIM manages storage and
networking resources, providing flexible and scalable infrastructure for the modern services
such as Virtual Reality or ultra-high definition TV.

8.1 Cloud infrastructure description

TNO has realized and integrated a cloud environment based on OpenStack in the TRIANGLE
testbed. This section describes how the physical and virtual infrastructure is set up and has
been configured.

The implemented cloud environments are running on a single hypervisor described in Section
8.1.1. The hypervisor hosts multiple clouds described in Section 8.1.2 and performs routing and
firewalling for their respective networks described in Section 8.1.3. The Juju models describing
the cloud configuration are found in Section 8.1.4. An overview of access to the OpenStack
Dashboard, command-line Client and REST APIs for using the cloud is given in Section 8.1.5,
while Section 8.1.6 gives an overview of all important used IP addresses. An overall overview
of the infrastructure is presented in Figure 29.

8.1.1 Hypervisor
Based on the instructions of the TRIANGLE project, the cloud environment has been installed
on a single server placed in the testbed location at Malaga University. To provide isolation
between the different types of nodes and physical machines usually found in a cloud
environment, different functional nodes such as the cloud controllers, compute nodes, storage
nodes, networking nodes and gateways, deployment managers and MANO orchestrators are
configured to run as KVM instances on the hypervisor server managed by libvirt. Overall, there
are 3 types of KVM instances:

 Manually-deployed instances, instances that are installed manually from a ISO. These
nodes include Ubuntu MAAS and the DANE (note that DANE can and typically will be
instantiated as a part of the specific experiment) .

 MAAS-deployed instances, these instances have not been installed manually, but are
installed through Ubuntu MAAS configuration and are later configured manually. These
instances include Juju and the MANO orchestrators.

 Juju-configured instances, these instances have been installed and configured fully
automatically through Juju models containing abstract configuration and functional
linking description. Juju employs Ubuntu MAAS to automatically install nodes with an
operating system prior to deploying configuration. The instances fully deployed through
Juju consist of the Juju-Controller itself that in turn manages the cloud environments,
and all Controller, Compute, Networking and Storage nodes found in each cloud.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 36/104

The hypervisor has 4 SATA hard disks, configured in 2 software RAID-10 arrays for reliability
purposes. The first array hosts the hypervisor software and configuration itself, while the second
array hosts the storage of the instances. For performance reasons, the TRIANGLE consortium
should consider upgrading this system to a two-array, four-hard disk hardware-based RAID
system based on SAS instead of SATA.

Network
- neutron-gateway

Eno1: 10.12.0.42/24 – gw .1 Eno2/br102: 10.102.81.42/24
Libvirt Hypervisor

DANE
(*independent installation)

Bridge .245 – gw .1NAT KVM Host

Ubuntu MAAS

Juju
- installed itself through MAAS

- deploys nodes in Juju-models through
MAAS, configures through Juju-charms

.2 .3
KVM Host KVM Host

Juju-GUI
- hosts Juju web GUI

.251 (dyn)
KVM Host

Controller
- mysql

- keystone
- heat

- neutron-api
- nova-cloud-controller
- dashboard (horizon)

- rabbitmq-server

Compute
- Nova-compute

- Neutron-openvswitch

(dyn) (dyn)
KVM Host KVM Host

Storage
- Cinder
- Glance

MANO
- OpenSource Mano Release TWO

(installed through MAAS)

(dyn)

(dyn)

KVM Host

KVM Host

Infra: 10.20.2.1/24
Public: 172.20.2.1/24

*

Juju-model: controller

Juju-model: openstackX

VMs NSs

*

vRouter

IntNets
(VXLAN)

Qemu

iproute, iptables, brctl

(dyn) *

IntNets (VXLAN)

Figure 29: Architecture overview

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 37/104

Figure 30: Hypervisor configuration through virt-manager

Figure 31: Overview of nodes deployed through MAAS, cloud-related nodes are initiated and

controlled through Juju.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 38/104

8.1.2 Clouds
The cloud environment exists out of 3 different clouds, all running on the previously described
hypervisor. All clouds are running OpenStack Pike deployed through the Ubuntu MAAS and
Juju services described in Section 8.1.4. Due to historic reasons, the clouds have the following
names and functionality:

 Cloud5; the Stable cloud that can be used in production
 Cloud4; the Staging/Integration cloud in which we test and verify functionality before

moving them to the Stable cloud.
 Cloud3; the Development cloud for experimental testing of functionality before moving it

to Staging

8.1.3 Networks
The following networks with respective subnets are considered from the cloud environments.
Unless stated otherwise, the .1 IP address specify both the gateway and DNS server for that
subnet and all these networks exist at the hypervisor through a virsh virtual network. DNS
requests are forwarded to the UMA DNS server at 150.214.40.11 by the recursive DNS server
dnsmasq running on the hypervisor.

The following networks are exposed from cloud environment to the testbed network.

 Access Network - 10.12.0.0/24:
This is the access network used by the hypervisor to access and forward traffic
towards the Internet, only the main Network Interface Card (NIC) of the hypervisor has
an IP address in this range. Ideally, Network Address Translation (NAT) should be
performed by the main router of the TRIANGLE network, however, due to limited
functionality of the main router the hypervisor masquerades outgoing traffic on this NIC
towards the Internet.

 TAP Network - 10.102.81.42:
This is the network used for the devices part of and under test by the TAP testbed.
From Cloud4 and Cloud5 instances can be fired up that are directly bridged into this
network, for this respectively the ranges 10.102.81.100-149 and 10.102.81.150-199
have been reserved. Due to limitations in the main router of the TRIANGLE testbed,
hosts besides cloud instances in this network need to manually configure network
routes via 10.102.81.42 (the hypervisor IP address) to access the following 4 subnets.

 OpenStack Infra - 10.20.2.0/24:
Through the Infrastructure network the VMs on which the cloud-infrastructure itself run
are configured and maintained.

 OpenStack Public5 (Stable) - 172.16.4.0/24:
This is the public network connected to the Stable cloud5, instances and floating IPs
on this network are dynamically addressable by hostname through the subnet
<hostname>.cloud5.morse.uma.es.

 OpenStack Public4 (Staging) - 172.16.3.0/24:
This is the public network connected to the Staging cloud4, instances and floating IPs
on this network are dynamically addressable by hostname through the subnet
<hostname>.cloud4.morse.uma.es.

 OpenStack Public3 (Development) - 172.16.2.0/24:
This is the public network connected to the Development cloud3.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 39/104

The following internal networks exist for functional reasons within the OpenStack clouds; but
are not exposed outside the cloud environments or hypervisor. They exist as private VXLAN
networks within the cloud to interconnect instances with each other. Access to the exposed
networks is realized using virtual routers in OpenStack performing NAT.

 OpenStack Internal5 (Stable) – Internal network on Stable Cloud5 interconnected to
network OpenStack Public5.

 OpenStack Internal4 (Staging) – Internal network on Staging Cloud4 interconnected to
network OpenStack Public4.

 OpenStack Internal3 (Development) – Internal network on Development Cloud3
interconnected to network OpenStack Public3.

 OpenStack TAP-Internal5 (Stable) - Internal network on Stable Cloud5 interconnected
to network TAP Network.

 OpenStack TAP-Internal4 (Staging)- Internal network on Stable Cloud4 interconnected
to network TAP Network.

Figure 32: Network overview of networks managed by lib-virt

8.1.4 Juju models describing the cloud infrastructure
The OpenStack clouds available at the TRIANGLE testbed are deployed and configured
through Ubuntu Juju, a service configuration and modelling tool that automatically configures
servers based on the abstract configuration expressed in a Juju model. Each functionality is
expressed and configured through a Juju charm, which can be mapped to a physical machine,
a virtual machine or an LXD container. Due to the ease of creating, reconstructing reconfiguring
and cleaning up functions, we have a very fine-grained distribution where each function
described by a Juju charm is mapped to its individual LXD container in a KVM instance or the
root container of a KVM instance if the charm’s functionality requires so. Figure 33 presents an
overview of the Juju model, containing of the following functions mapped to the following nodes:

 Controller: A node executing the functions related to management, configuration and
monitoring of the cloud, consists out of

o Cinder-API: Offers the API and scheduling functionality for the block storage
service and provides management of volumes.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 40/104

o Heat: OpenStack Orchestration service, a non-ETSI aligned alternative for
MANO/NFV orchestration (note: a different solution, i.e., Open Source Mano, is
actually used as the orchestrator).

o Horizon: The OpenStack dashboard / web GUI.
o Keystone: Identity, authentication and authorization service.
o MySQL: A Percona database cluster running MariaDB instances
o Neutron-API: Virtual network service, enabling network management, QoS,

ACLs, etc.
o Nova-cloud-controller: Cloud computing controller, scheduling, managing and

monitoring computing resources through its subservices nova-scheduler, nova-
api and nova-conductor.

o RabbitMQ: Advanced Message Queuing Protocol server used by all services to
interconnect.

 Compute:
o Nova-compute (root container): Provides hypervisor service to run instances on.

 Network:
o Neutron-gateway (root container): Provides central networking services such as

virtual routers to interconnect external (bridged or routed) networks and internal
(VXLAN) private networks through routing, firewalling and NAT.

 Storage:
o Cinder-volume (root container): Actual storage of LVM volumes on nodes,

managed by Cinder-API.
o Glance: Image registration and discovery service

 Subordinate functions: Elements that upgrade functionality of the main elements
described in the previous 4 categories.

o Neutron-OpenvSwitch: Provides Neutron-API and Nova-compute with Open
vSwitch functionality.

o NTP: Provides time synchronization to nodes.

The Juju model configuring the clouds is custom-made for the TRIANGLE testbed and in
particular contains the following additional configuration:

 L2 and L3 network connectivity between external and private internal (VXLAN) networks
using Open vSwitch SDN switches throughout.

 Separate networking nodes to provide gateway and floating IP address functionality.
 DNS integration such that nodes in the routed public networks can be accessed through

their hostnames <hostname>cloud[4-5].morse.uma.es.
 Additional non-ETSI aligned orchestration module through the OpenStack Heat package (note:

a different solution, i.e., Open Source Mano, is actually used as the orchestrator).
 Has split storage control and storage volume functionality for future scalability through

LVM.
 Has per-machine restriction and tag descriptions to automatically select the correct VMs

for their respective functions.

The full YAML export of the Juju model and the cloud-config scripts are available and are used
to automatically create all cloud configuration once a cloud is reinitiated.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 41/104

Figure 33: Juju model describing functional elements and their connections

8.1.5 Dashboard and API access
The cloud instances can be accessed and configured through both a Web GUI Dashboard
(Horizon) and service-specific APIs. This section presents an overview of the available
configuration services, section 8.1.6 gives an overall overview of the used IP addresses. Note
that these IP addresses will change when elements of the cloud model are deleted and
reinstalled through Juju. All addresses are publicly accessible from the networks described in
section 8.1.3, given that local static routing is configured when residing in the Access or TAP
Network. When connecting from outside the TRIANGLE Testbed network, an SSH Dynamic
Tunnel (SOCKS Proxy) towards a node within the network can be used.

OpenStack Dashboard
The most easy way to configure and administer projects, instances, networks, authentication,
storage, images, etc., etc., is through the OpenStack Dashboard supplied by the Horizon
package. It is accessible through either http://<OpenStack-Dashboard> or https://<OpenStack-
Dashboard>, with the appropriate IP address selected from section 8.1.6. Annex 5 gives an
introduction into the usage of OpenStack Dashboard.

CLI Access
Additionally, all configuration can be applied through the OpenStackClient (OSC) command-line
client. OSC provides a shell interface with all configuration options available and is available
under the python-openstackclient package in most package repositories. A full documentation
of OSC can be found at [3] In a nutshell, after installation the command openstack provides a
shell that auto-completes and gives information on the fields necessary to complete a command.
The following environment variables need to be set to connect to Stable Cloud5, which can be
easily saved in a local file admin-openrc5.sh that can be sourced through `. admin-openrc5`:

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 42/104

Table 10: admin-openrc5.sh

export OS_AUTH_URL=http://10.20.2.45:5000/v3

export OS_PROJECT_DOMAIN_NAME="default"

export OS_PROJECT_NAME="admin"

export OS_USER_DOMAIN_NAME="default"

unset OS_TENANT_ID

unset OS_TENANT_NAME

export OS_USERNAME="admin"

export OS_PASSWORD="admin"

export OS_REGION_NAME="RegionOne"

if [-z "$OS_REGION_NAME"]; then unset OS_REGION_NAME; fi

export OS_INTERFACE=public

export OS_IDENTITY_API_VERSION=3

unset OS_TOKEN

API Access
It is also possible to have programmatic access to the configuration of the OpenStack Cloud. In
fact, both the OpenStack Dashboard and the OpenStackClient rely fully on API access to read
and write OpenStack configuration. Additionally, API Access is for example used by the MANO
orchestrators (OSM) connected to the OpenStack clouds to administer the appropriate
configuration and is useful for custom environments to integrate with OpenStack. For example,
we have used direct API access in our sample TAP scripts to configure QoS parameters in
OpenStack.
Annex 4 provides a short introduction of this API. A full overview of all OpenStack API
Documentation can be found at [4], we will give a short introduction to each API available in the
TRIANGLE clouds and how to operate those.
Additionally, the cloud configuration can be orchestrated from the MANO orchestrators based
on Open Source MANO (OSM) and the TAP client respectively described in sections 8.2 and
8.2.4.5.

8.1.6 Overall overview of IP addresses
The following services are accessible at the following IP addresses through the following
connection methods

Host Name IP addresses Connections Authentication
OpenStackCloud
(Hypervisor)

10.12.0.42
10.102.81.42

ssh://morse.uma.es:11300
ssh://<IP-Address>

morse+tno (Key-auth)

MAAS 10.20.2.2 ssh://triangle@10.20.2.2
http://10.20.2.2/MAAS

triangle:triangle

Juju 10.20.2.3 ssh://ubuntu@10.20.2.3 (Key-auth)
Juju-Controller 10.20.2.215 https://10.20.2.251:17070/gui/u/admin admin / Run `juju gui` at

Ubuntu Juju for pw.
DANE 10.102.81.245 ssh://morse.uma.es:11341

ssh://10.102.81.245
tno (Key auth)

OSM5 10.20.2.44 https://10.20.2.44:8443
ssh://ubuntu@10.20.2.44

admin:admin
(Key-auth)

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 43/104

For the Stable Cloud 5, the following services are deployed by Juju on 4 VMs labelled
Compute05, Controller05, Network05 and Storage05. On these nodes, Juju creates an LXD
container per service with its own IP address to allow fine-grained per-service configuration,
deletion and recreation. Access to these web and API services is explained in section 8.1.5.
Logging into the nodes through SSH is seldomly necessary as they are configured through the
Juju model “OpenStack5” through the Juju Web GUI at Juju-Controller. If SSH access is
necessary to any of these services, this is possible through the following command when logged
into the Juju node: `juju ssh -m openstack5 <unitname>`, where the unit is build up from the
servicename followed by its instantiation (generally “/0” when it is the first instantiation).

Service Name Location IP address
Nova-Compute Root@Compute05 10.20.2.30

(Empty) Root@Controller05 10.20.2.30

Cinder-API LXD@Controller05 10.20.2.20

Heat LXD@Controller05 10.20.2.41

Keystone LXD@Controller05 10.20.2.45

MySQL LXD@Controller05 10.20.2.40

Neutron-API LXD@Controller05 10.20.2.21

Nova-Cloud-Controller LXD@Controller05 10.20.2.47

OpenStack-Dashboard
(Horizon) LXD@Controller05 10.20.2.43

RabbitMQ-Server LXD@Controller05 10.20.2.27

Neutron-Gateway Root@Network05 10.20.2.14

Cinder-Volume Root@Storage05 10.20.2.18

Glance LXD@Storage05 10.20.2.34

The previous IP addresses may change when a cloud or elements of the clouds are deleted
and reinitiated through Juju. The most recent IP addresses can be found through the Juju Web
GUI at Juju-Controller or by running the command `juju status -m openstack5` on the Juju node
itself. Due to their volatile nature, we have not included all service IP addresses of the
Development Cloud 3 and Staging Cloud 4.

8.2 MANO – Management and Network Orchestration
In this section we describe in more details the selected orchestrator platform being ETSI OSM
(Open Source MANO[6]) in the context of the TRIANGLE testbed. To make the document self-
contained, we provide some brief information about more generic aspects of MANO like
architecture or deployment, however, the reader is referred to the OSM documentation for more
extensive coverage of these topics.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 44/104

8.2.1 Functions
The Management and Network Orchestration (MANO) stack allows for rapid deployment of
Virtualized Network Functions (VNFs), their flexible configuration, lifecycle monitoring and
decommissioning in order to automatically operate a potentially complex Network Service (NS).
A model driven approach is taken to describe VNFs and NSs. MANO enhances interoperability
with other components in the system such as Virtual Infrastructure Managers (VIMs) or
Software-Defined Networking (SDN) controllers and is able to integrate with multiple instances
and variants (solutions such as OpenStack, VMware ESXi, etc) of them.

8.2.2 Architecture
Open Source MANO (OSM (ETSI OSM, sd)) has an ambition to be a reference implementation
of the ETSI standards. The general architecture is presented on Figure 34, extracted from [7].
Please refer to this document for the detailed architecture description.

Figure 34 OSM mapping to ETSI NFV MANO

8.2.3 Deployment
OSM deployment on the TRIANGLE testbed was performed using the binaries for Release TWO
(a stable release during execution of the TRIANGLE Open Call 1 project), following the
procedure from [Section 8.1.1] [8]. A dedicated Ubuntu 16.04 Virtual Machine (OSM5,
10.20.2.44) was deployed and configured to use (non-nested) LXD containers. As a result of
the installation, three LXD containers are created in the OSM host: RO (Resource Orchestrator),
VCA (VNF Configuration and Abstraction), and SO-ub (hosting Service Orchestrator and the
User Interface), as shown in Figure 35 (source: [8].) and Table 11.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 45/104

Figure 35: State of an OSM VM after OSM installation

Table 11: LXD containers after OSM installation

ubuntu@OSM5:~$ lxc list

+-------+---------+--------------------------------+------+------------+-----------+

| NAME | STATE | IPV4 | IPV6 | TYPE | SNAPSHOTS |

+-------+---------+--------------------------------+------+------------+-----------+

| RO | RUNNING | 10.28.33.48 (eth0) | | PERSISTENT | 0 |

+-------+---------+--------------------------------+------+------------+-----------+

| SO-ub | RUNNING | 10.28.33.163 (eth0) | | PERSISTENT | 0 |

+-------+---------+--------------------------------+------+------------+-----------+

| VCA | RUNNING | 10.44.127.1 (lxdbr0) | | PERSISTENT | 0 |

| | | 10.28.33.151 (eth0) | | | |

+-------+---------+--------------------------------+------+------------+-----------+

Connectivity to OpenStack was then configured, following the procedure from [Section 8.2.2]
[8], with the appropriate parameter for the Keystone address being http://10.20.2.45:5000/v2.0

8.2.4 Interfaces and integration with TAP
8.2.4.1 RO REST interface – Resource Orchestrator

The OSM Resource Orchestrator exposes the northbound REST interface which is documented
in [9]. It allows, among others, to perform actions over tenants, data-centers, instances etc.

8.2.4.2 SO REST interface – Service Orchestrator

The OSM Service Orchestrator exposes the northbound REST interface which is documented
in [10]. It allows, among others, to perform actions such as uploading service descriptors or
instantiating a Network Service. At the time of writing this document the only available version
refers to OSM Release ONE while the deployed version was Release TWO. While no thorough
verification was performed, we have noticed some problems in running the examples (e.g.,
instantiating the network service using "nsd-ref" resource fails). As a partial remedy for these
kind of problems, we decided to make a small modification in OSM Client (Section 8.2.4.3)
which under the hood also uses REST. The client now prints a very verbose output which
includes the REST URL, request headers, json payload, etc. which can in turn be used to
compose the REST commands used for example by TAP script (Section 8.2.4.5).

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 46/104

8.2.4.3 CLI – Command Line Interface

The command line interface client is available for OSM MANO. We will describe it in more
details, along with the modifications we made to it.

8.2.4.3.1 OSM client

The OSM community provided a python-based OSM Command Line Interface client. While for
Release THREE it is installed by default, for Release TWO a manual installation is needed,
followed by setting correct environmental variables, see both Table 12 and Table 11. The client
was installed on the VM instance OSM5 (10.20.2.44) and the environmental variables were put
for the convenience to osmvars.sh file (usage: source osmvars.sh)

Table 12: OSM Client installation, configuration and verification

sudo apt install libcurl4-gnutls-dev libgnutls-dev

sudo pip install git+https://osm.etsi.org/gerrit/osm/osmclient@v2.0.2

export OSM_HOSTNAME=10.28.33.163

export OSM_SO_PORT=8008

export OSM_RO_HOSTNAME=10.28.33.48

export OSM_RO_PORT=9090

osm vim-list

+----------------+--------------------------------------+

| vim name | uuid |

+----------------+--------------------------------------+

| openstack-site | 811971ae-c46a-11e7-b9ee-00163e1024a7 |

+----------------+--------------------------------------+

8.2.4.3.2 OSM client modifications

OSM client can be modified to display a very verbose output, helpful in inspecting REST calls,
see Table 13. While useful, please note this is just a temporary fix and a more elegant solution
(e.g., adding “verbose” switch) can be developed. Furthermore, if the descriptor was created in
the GUI (see Section 8.2.4.4 and Section 19.2 in Annex 5), it is likely that it contains additional
“meta-information”, which is necessary for the graphical layout of the service but has no
infrastructural function. This information, if appearing in the json file submitted with the REST
POST call to start a network service will cause an error and thus has to be removed. This is not
a result of our modification but rather an inconsistency in the CLI client and GUI. Our TAP plug-
in verifies the existence of the meta-information field, however does not remove it if present.
See Table 14 for the details, with the meta-information part marked in red.

Table 13: OSM Client modifications

git clone -b 'v2.0.2' --single-branch https://osm.etsi.org/gerrit/osm/osmclient

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 47/104

#in the file

~/osmclient/osmclient/common/http.py

#in the function

def _get_curl_cmd(self, endpoint):

#the following line was added to allow for verbose output

 curl_cmd.setopt(pycurl.VERBOSE, True)

#to see the json content add around line 79 the print statement

 jsondata = json.dumps(postfields_dict)

 print jsondata

#to rebuild

~/osmclient$ sudo pip install . --upgrade

#to verify

$ osm vim-list

* Trying 10.28.33.163...

* Connected to 10.28.33.163 (10.28.33.163) port 8008 (#0)

* found 148 certificates in /etc/ssl/certs/ca-certificates.crt

[output omitted]

Table 14: Using OSM client with GUI generated descriptor may cause an error

ubuntu@OSM5:~/osmclient$ osm ns-create --ns_name rest_test13 --nsd_name nsd_3 --vim_account openstack-

site --admin_status ENABLED --ssh_keys piotr-zuraniewski-tno-nl

* Trying 10.28.33.163...

[output omitted]

* Connection #0 to host 10.28.33.163 left intact

{"nsr": [{"short-name": "rest_test13", "ssh-authorized-key": [{"key-pair-ref": "piotr-zuraniewski-tno-

nl"}], "description": "default description", "om-datacenter": "811971ae-c46a-11e7-b9ee-00163e1024a7",

"nsd": {"id": "nsd_3", "constituent-vnfd": [{"member-vnf-index": 1, "start-by-default": "true", "vnfd-

id-ref": "ubuntu_2c_2G_1iface_vnfd"}], "meta":

"{\"containerPositionMap\":{\"1\":{\"top\":135,\"left\":435,\"right\":685,\"bottom\":190,\"width\":25

0,\"height\":55},\"a8d499e9-ec0c-452b-bcb6-

6a0e8880fa67\":{\"top\":30,\"left\":135,\"right\":385,\"bottom\":85,\"width\":250,\"height\":55},\"vl

d-1\":{\"top\":300,\"left\":447.5,\"right\":697.5,\"bottom\":338,\"width\":250,\"height\":38}}}",

"name": "nsd_3", "vld": [{"mgmt-network": "false", "vnfd-connection-point-ref": [{"vnfd-connection-

point-ref": "eth0", "member-vnf-index-ref": 1, "vnfd-id-ref": "ubuntu_2c_2G_1iface_vnfd"}], "name":

"vld-1", "id": "vld-1"}]}, "admin-status": "ENABLED", "id": "21e7c5ac-f60e-11e7-bedf-5254009bd772",

"name": "rest_test13"}]}

[output omitted]

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 48/104

* Connection #0 to host 10.28.33.163 left intact

failed to create ns: rest_test13 nsd: nsd_3 result: {u'error': u'Resource target or resource node not

found'}

8.2.4.4 GUI – Graphical User Interface

OSM also provides a graphical interface (called launchpad), in our case accessible under link
https://10.20.2.44:8443/launchpad/

The GUI simplifies both descriptors design of descriptors as well as managing their catalogue,
ssh keys deployment and network services instantiation, see Figure 36. From our experience,
Launchpad GUI (service instantiate part) is however not always the best source of information
in case of instantiation errors. Frequently, only “Failed” message (along with UUID of the
instance) is given and for more insights MANO logs need to be inspected, see Section 8.2.6 for
comments on troubleshooting.

Figure 36: OSM GUI sample screenshot

8.2.4.5 TAP integration

We have integrated MANO with the TAP system. The detailed description of the steps along
with the sample test plan is in Deliverable 3.4. Note, due to the bug/limitation of the SSH.NET
library regarding implemented HostKey algorithms it is not possible to connect to openSSH
servers in Ubuntu 16.04.4 and later (ssh_dispatch_run_fatal: Connection to 172.16.4.13: error
in libcrypto). Modern servers offer ssh-rsa, rsa-sha2-512, rsa-sha2-256, ecdsa-sha2-nistp256,

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 49/104

ssh-ed25519 while SSH.NET offers only ssh-rsa and (depreciated) ssh-dss. We have tested
TAP plug-in with Ubuntu 16.04.3 (earlier version should also be supported).

8.2.5 Instantiation
Network service instantiation is performed using the Launchpad: Instantiate page (see Figure
37)

Figure 37: Instantiation

8.2.6 Troubleshooting
Most of the useful logs from MANO are stored on the LXD container running the given service
(such as Resource Orchestrator). A good point to start with debugging is to log in to the OSM
VMs (ssh ubuntu@10.20.2.44) and pull the Resource Orchestrator log (lxc file pull
RO/var/log/osm/openmano.log .). The detailed description of the typical operations can be
found in [11]. From the GUI, Logging and Debug sections are available, see Figure 38 and
Figure 39

Figure 38: Logging and debug via OSM GUI

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 50/104

Figure 39: Logging and debug via OSM GUI

Annex 5 provides a sample workflow which can be used by the experimenter using MANO
integrated with TAP.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 51/104

9 UE (User Equipment and accessories)

9.1 Supported UEs
Table 15 shows the current status of commercial devices connected to the TRIANGLE testbed.

Table 15 Current status of devices integrated into the testbed

Device Main Ant 1 Main Ant 2 Diversity
Ant 1

Diversity
Ant 2

Battery

Samsung Galaxy
S4 Yes N/A

Yes N/A Yes

Samsung Galaxy
S5 Neo Yes N/A

No N/A Yes

Samsung Galaxy
S6 Yes N/A

Yes N/A Yes

Samsung Galaxy
S7 Yes No

Yes No Yes

iPhone 7 Plus Contact Ant N/A No N/A No

Samsung Galaxy
S8 Yes No

Yes No Yes

HTC One Contact Ant N/A Contact Ant N/A No

Huawei Contact Ant N/A Contact Ant N/A No

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 52/104

10 Local applications and Servers (TNO)

10.1 DANE Local applications and Servers (TNO)
A DANE implementing the MPEG DASH SAND protocol based on websockets. The DANE
listens for WebSocket connections from DASH video clients. Additionally, this DANE exposes
a Rest API to set the bandwidth available in the network for the video clients.

10.1.1 Installation
The DANE software library can be installed by issuing the following command:

python setup.py install

10.1.2 Running
After installation, the DANE can be run by invoking the script installed:

dane

10.1.3 SAND support

We have implemented the following messages from the MPEG-SAND protocol:

Table 16 Messages from MPEG-SAND protocol

Device Message Description
Dane DaneCapabilities Informs the video client on the messages supported

by this DANE.

 SharedResourceAssignment Informs the video client on the operating point (i.e.
DASH representation) allocated to it by the DANE.

Client ClientCapabilities Informs the DANE on the messages supported by
this video client.

SharedResourceAllocation

Informs the DANE that this client wishes to receive
resource assignment. Furthermore, it informs the
DANE of the operating points (i.e. DASH
representations) it supports.

10.1.4 Protocol

The following diagram illustrates the operation of the SAND protocol, and the messages used
to exchange bandwidth information.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 53/104

+-----------+ +-----+
|DASH client| |DANE |
+-----+-----+ +--+--+
 | |
 | WebSocket connect |
 +--> |
 | |
 | ClientCapabilities |
 +--> |
 | |
 | DaneCapabilities |
 | <---+
 | |
 | SharedResourceAllocation |
 +---> |
 | |
 | SharedResourceAssignment |
 | <---+
 | |
 + +

10.1.5 DANE REST API
The DANE REST API runs on port 8088.

Setting the available bandwidth

curl -X PUT -d bw=my_bandwidth http://dane:8088/api/bandwidth

Sets the available bandwidth to my_bandwidth.

Example:

curl -X PUT -d bw=12345 http://dane:8088/api/bandwidth

Getting the available bandwidth

curl -X GET http://dane:8088/api/bandwidth

Returns the available bandwidth as known by the DANE.

Resetting the DANE

curl -X POST http://dane:8088/api/reset

Resets the DANE state, i.e. disconnect all clients and reset the available bandwidth.

10.1.6 Dependencies
The DANE software depends on the following PyPI packages:

• pytz, for formatting datetime as requested in the SAND protocol.
• autobahn, a WebSocket library in Python.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 54/104

• twisted, a networking framework needed for autobahn to work.
• requests, a HTTP requests library.

10.2 Web Client

10.2.1 Introduction
This software demonstrates the use of the DASH-SAND protocol in the context of
omnidirectional video.

10.2.2 Configuration
The configuration file is located at js/config.js and allows the following to be configured:

Parameter Description
sandURI A WebSocket URI

to a SAND server (e.g. a
DANE).

sandURI A WebSocket URI to a SAND server
(e.g. a DANE).

metricsURI A URI pointing
to a webserver capable of

logging metrics.

metricsURI A URI pointing to a webserver capable
of logging metrics.

mpdURI A URI pointing to
the MPD file to be played by

the player.

mpdURI A URI pointing to the MPD file to be
played by the player.

10.2.3 Metrics Logging
Metrics can be logged to a HTTP server listening for POST requests at the following endpoints:

• <url>/MetricsData/, the complete dash.js metrics object will be sent here formatted as
JSON.

• <url>/QualityData/, the quality data of the media currently playing will be sent here
formatted as JSON.

In the current implementation, both metrics are logged every 5 seconds. For debugging
purposes, the full dash.js logs are currently also sent to the DANE.

10.2.4 Building
Preparation Before attempting a build, make sure that all dependencies have been installed by
running:

npm install

Standalone The project can be built using Webpack. Simply running:

npm run build

will build the project and output into the dist folder.

Server The Webpack development server has been configured to disable all caching through
response headers. It can be run using:

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 55/104

npm start

Docker A Docker buildfile has been included which will create a nginx webserver container.
The web server will be configured to host the web page while disabling all caching of video
segments. Such a container can be built using either:

sh build.sh

or

docker build -t sand .

For features using multi-range HTTP requests, usage of this container is required.

Changing the media content The video can be changed by modifying the mpdURI field in the
config file, and/or by modifying the contents of the video folder. While hosting the content, it can
be sufficient to change the contents of the dist/video folder instead.

Disabling DANE influence To ignore any messages received from the DANE, add the
ignoreDane (casesensitive) parameter to the URL.
With DANE:

http://dane:8080

Without DANE:

http://dane:8080/?ignoreDane

10.3 Metrics Database

10.3.1 Introduction
Webserver with API for the storage and retrieval of logs created by a dash.js client. This server
demonstrates how dash.js client metrics can be logged and retrieved. Note that the storage is
in-memory, and will be lost on a restart/crash.

10.3.2 Running
Before running, install project dependencies by running:

npm install

The program can be run by the following command:

npm start

The exposed port can be configured by setting the PORT environment variable before running
the program.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 56/104

10.3.3 Docker
The docker image can be built by invoking:

docker build -t metricsdb .

10.3.4 REST API
Logging metrics data Metrics data can be logged by making a POST request in the following
way:

curl -X POST http://dane:8081/{uuid}/MetricsData

where {uuid} should be an id which uniquely identifies a client corresponding to the metrics.

Logging quality data Quality data can be logged by making a POST request as follows:

curl -X POST http://dane:8081/{uuid}/QualityData

where {uuid} should be an id which uniquely identifies a client corresponding to the metrics.

Retrieving data Data can be retrieved by making a GET request to the same endpoint as used
for logging data. The client uuids which are currently in the database can be obtained by making
a GET request as follows:

curl -X GET http://dane:8081/ids

Dumping data The current state of the log can be dumped by making a POST request in the
following way:

curl -X POST http://dane:8081/dump/{name}

where {name} should be a prefix of an indexed set of logs.

10.4 Metrics Visualisation
This service will display from a server hosting dash.js metrics at these endpoints:

• <url>/QualityData
• <url>/MetricsData

Data will be polled every second, and displayed on a graph.

10.5 Fake client swarm

10.5.1 Introduction
A simple service to launch and manage multiple SAND clients.
These clients use a weight of 5 by default. The default port is 10260.

10.5.2 Commands
In order to kill all clients, a POST request should be made as follows:

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 57/104

curl -X POST http://dane:10260/reset

Spawning new clients can be done by issuing a PUT request in the following way:

curl -X PUT http://dane/spawnClients/{count}

where {count} should be replaced by the desired number of new clients.

10.6 Obtaining logs
The logging server provides an overview of all log files at its root endpoint. The URL to view
the logging directory is as follows: http://dane:10000/

When operating, the DANE logs its communication with the clients, and provides details on its
bandwidth assignment algorithm. The log file can be accessed by navigating to the log service
URL. From the TAP machine, this will be located at:

http://dane:10000/dane.log

Logged metrics can be dumped when the Metrics database service is running. Assuming the
id ’test’ was used to dump a metrics database for the first time, this file can be obtained at:

http://dane:10000/test-0.log

10.7 Default port assignments
The ports on the DANE VM are assigned as follows:

Service Sub-service Container
port

Host port

DANE SAND WebSocket 9000 90000

 REST 8088 8088

Fake SAND client REST 10260 10260

Web client HTTP 8080 8080

Metrics database REST 3000 8081

Metrics viewer HTTP 80 8082

Log web service HTTP 10000 10000

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 58/104

11 Extensions and new features

11.1 Booking system
The booking system consists in a web calendar service used by the experimenters to book the
TRIANGLE Portal Testbed. The system is completed with a script that queries the current owner
of the Testbed at the beginning of every hour and updates the Portal Testbed owner accordingly.

11.1.1 Web calendar service
The web calendar service used is Booked Scheduler [2], an open source booking service based
in LAMP that has an API to interact with it, providing the possibility to automate the process.

Booked Scheduler allows a user to define a resource element that will be shared by different
people. This resource element will be associated with a resource schedule that will contain the
resource reservations. In our case, the resource will be the TRIANGLE Portal Testbed. The
capacity of this resource is one person, so only one researcher can use the Testbed at a given
time. The resource schedule is divided in 1-hour slots.

The same email account used to access the Portal Testbed is used to access the web calendar
service to make reservations.

There are several ways to make a reservation. It can be done using any submenu of the
“Schedule” tab.

 From Bookings: Clicking on any slot from the timetable to start making a new
reservation.

 From My Calendar: Clicking on any day of the calendar to start a new
reservation.

 From Resource Calendar: The same as in “My calendar”.

 From Find a Time: Search a slot time and click one of the results.

Any of these methods will redirect to the “New Reservation” page. In this page, one can select
the time start and end of the reservation and optionally give it a title and add comments. After
clicking “Create”, the system will confirm the reservation if there are no conflicts.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 59/104

Figure 40 The New Reservation Page allows a user to select a slot time to use the Portal

Testbed

Figure 41 Calendar interface. It shows the reservations made. Clicking on any day will take you

to the New Reservation Page.

11.1.2 Testbed owner updating
The web calendar service itself only provides the calendar interface to create reservations, but
these reservations alone do not have impact on the TRIANGLE Portal Testbed. In order to

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 60/104

automatically update the testbed owner according to the reservations made in the web calendar
a couple of scripts have been designed.

The first script, written in Python, will use the Booked Scheduler API to ask if there is a
reservation for the current hour, and if there is one, to get the email of the person who reserved.

With this email, a second script, written in Shell, will update the Portal testbed owner using the
Portal Ruby on Rails console commands.

These scripts are executed at the beginning of every hour, since the web calendar is structured
in 1-hour slots. This way, we provide automatic access to the TRIANGLE Portal Testbed for a
researcher when he or she has booked it via the web calendar service.

11.2 Remote screen
Following a demand from the researchers that have been using the testbed, we now provide a
remote screen option for the TRIANGLE Testbed Portal. This remote screen shows a live video
of what is happening in the physical screen of the device under test using VNC technology.

To achieve this, we take advantage of the screenshotfeed feature present in the Quamotion
Frontend[http://docs.quamotion.mobi/en/latest/frontend/frontend-devices.html#open-the-
screenshotfeed-for-a-device], adding a basic authentication system to increase the security of
Quamotion.

This way, the clients will have access to the full Quamotion Frontend when they reserve the
TRIANGLE Portal Testbed. Only the researcher that has made a reservation for a certain time
slot will have access to the Frontend during that timeslot. In the Frontend, under the “Devices”
tab, they will be able to open a new Remote screen session for the device. Additionally, they
will be able to view the status of the sessions started during their experiments (in the “Sessions”
tab), which will give them more information about the execution of their experiment, something
that has also been demanded.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 61/104

Figure 42 View of the screenshot feed feature provided by Quamotion.

11.2.1 Basic Authentication
As already mentioned, we have extended the Quamotion Frontend with a basic authentication
system as a protection mechanism. This way, when a user tries to access the Frontend a prompt
will ask for username and password, which has been previously provided by the testbed
managers.

To increase the security, first we use an Nginx web server with the reverse proxy feature. This
allows us to hide the existence of the Quamotion Frontend server, closing its port to the public,
leaving open only the typical port 80. The Quamotion resources are returned to the client as if
they originated from the Nginx web server.

Additionally, we use the Nginx Basic Authentication feature, forcing clients to use their email
(the same one they use in the Testbed and Booking service) and a password to access the
Quamotion Frontend. This authentication system uses a password file that stores a list of
usernames and their unencrypted password. We, using user’s email as seed, generate the
password. This password is sent to their owners and is permanent.

The password file will only contain the username and password of the client that has reserved
the testbed at the present time. For example, if there are no reservations at a given time, the
password file is empty, so nobody can try to access. If there is a reservation at a given time,
only the username and password of the client who did the reservation is stored in the password
file at that given time, so only him or her can try to access.

The editing of the password file is achieved with a Python script that consumes the Booked API
to know if there is a reservation every hour. If there is not, it cleans the password file, deleting
any info that there could be inside. If there is a reservation, it gets the email of the person who

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 62/104

did it, generates the password, as described before, and updates the content of the password
file with this information.

11.3 Power shell support
Docker is a software tool that let us to package an application and its dependencies inside a
virtual container to be launched on demand, gaining in flexibility, portability and stability. This
new deployment allows us to execute all WebDriver actions using PowerShell.

Our Quamotion Docker deployment consists in two Docker containers provided by Quamotion,
running in a Windows 10 host:

 WebDriver container: This container runs the latest WebDriver version.

 Ubuntu runner container: This container is an Ubuntu system used to run PowerShell
scripts. These scripts are the user flows executed in the device by WebDriver. The user
flows are downloaded in this container and then executed. This way, we have a secure
environment to run any user flow without affecting the host machine.

We use several PowerShell scripts to deploy and interact with the Docker containers. The first
script runs the adb server in the Windows 10 host. This adb server is configured so that the
containers and the host can connect and adb client to it. Then, a second script launches and
configures the two containers. A third script downloads two scripts in the Ubuntu container: the
runner script and the user flow generated by the researcher. The runner script creates a new
WebDriver session, executes the user flow script downloaded and end the session after it.
Finally, a script tears down all the containers and stop the adb server.

Table 17 List of PowerShell scripts used in the Quamotion Docker deployment

Script Action Executed in
StartAdb.ps1 Run adb.exe Windows 10 host

LaunchContainers.ps1
Launch WebDriver and Ubuntu
Containers. Add application
and license to WebDriver.

Windows 10 host

StopContainers.ps1
Tear down the containers and
stop the adb server.

Windows 10 host.

RunApplicationSession.ps1

Download Runner.ps1 and
Userflow.ps1 in the Ubuntu
container, then execute
Runner.ps1.

Windows 10 host

Runner.ps1
Start a new WebDriver session,
execute Userflow.ps1 and then
end the session.

Ubuntu container

Userflow.ps1 Perform actions in the device. Ubuntu container

qmDocker.psm1
Assemble several functions to
be used by the rest of the
scripts

Windows 10 host
and Ubuntu
container.

As the Runner.ps1 and Userflow.ps1 scripts are executed in the Ubuntu container, they need
to be available on the Internet to be downloaded in it. The RunApplicationSession.ps1 script
takes the URL of each script to perform the download in the Ubuntu container. Since the user

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 63/104

flow is uploaded to the Portal by the researcher, its URL will be served by orcomposutor to
RunApplicationSession.ps1. Runner.ps1 will be always the same, so it can be placed in the
Portal as static content and its URL will be passed to RunApplicationSession.ps1 as well.

The user flow script is composed by the researchers using the Spy feature of WebDriver, as
before. However, the script will be now exported in PowerShell, instead of in JSON format. This
is not a dramatic change since WebDriver is already able to execute user flows scripts in
PowerShell.

All the scripts executed in the Windows 10 host are integrated in our TAP test plan master
template, using the Run Process step. These steps substitute the previous ones used to create
a new session, replay the user flow and stop the session.

Table 18 List of PowerShell scripts used in the Quamotion Docker deployment

Step Action

Stop Containers
Execute the
StopContainers.ps1 script.

Start adb Execute the StartAdb.ps1 script

Launch Containers
Run the LaunchContainers.ps1
script.

Run Session
Execute the
RunApplicationSession.ps1
script.

This new approach will not have an impact in the way that researchers uses the Triangle Portal.
However, it allows us to start every new experiment from a clean state, since the containers can
be deployed and torn down every time.

11.4 iOS support
The TAP plugins developed in the Release 2 for controlling devices based on iOS has been
integrated into the master template which drives the execution of tests launched through the
Portal. In this Release, iOS devices can be selected in the Portal during the Creation of the
testing campaign.

11.5 Model-based testing: Automatic App model extraction
In deliverable D3.2 “Progress report on the testing framework Release 2” we presented a model-
based testing approach that given a model of the application under test, produces a set of app
user flows that can be used during the test case execution. During the last months, we have
enhanced this approach defining methodology and implementing a tool to assist the app
developer to generate the application model. Although the approach is independent of the
device operating system, some tasks are explained targeting Android devices.

Figure 43 shows an overview of the approach, which is based on three main elements: (i) the
app controller, (ii) the exploration algorithm, and (iii) the model parser. Given the application
binaries, the app controller installs and controls the execution of the target app. The app
controller can perform user events, and capture the hierarchy of visual elements. The
exploration algorithm decides the order in which events are performed and determines whether
the app is in a visited or new state after performing such events. Finally, the model parser

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 64/104

transforms the states and transitions obtained from the exploration into the app model. The
following sections explain each element in more detail.

Figure 43 Model extraction overview

11.5.1 App controller
The app controller interacts with the device where the application is running. The app controller
is responsible for the following tasks: 1) Install, launch and close the application, 2) obtain the
hierarchy of visual elements of the active view, 3) determine the list of visual elements that
accept user events, 4) perform user events on specific visual elements (e.g. click, long click or
scroll), and 5) fire system events (e.g. open/close keyboard or play/pause media).

This element is closely related to the device's operating system, and thus its implementation
may change depending on that. Currently, we have implemented an app controller for Android
devices, which is based on two testing frameworks:

Quamotion WebDriver is a test automation framework that automates iOS and Android apps on
real devices. WebDriver is an open protocol for test automation originally designed for web
applications based on exchange of JSON messages.

Android UIAutomator [1] is a UI testing framework included in the Android SDK. In our approach,
the main task of UIAutomator is to extract the Document Object Model (DOM) of the app; i.e.,
to obtain the hierarchy of visual elements. For each visible element, the DOM includes a list of
attributes: the resource identifier, the class, and the user events accepted. This information is
especially suitable to determine if the UI has changed after performing a user event, and to
obtain the list of visual elements and events that must be explored.

Mobile applications have complex UIs with multiple activities, fragments, overlays, views, etc.,
which accept different types of user events. The exhaustive exploration of all visual elements
that react to user events can lead, in the worst case, to large models with a worse performance
in the generation phase of the app user flow. To manage the size of the application model, the
app controller includes the following configurable options:

 Types of events considered in the exploration. For instance, if scrolling a layout
produces the same effect as clicking on a tab menu, we can ignore the scrollable
views and perform only click events.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 65/104

 Number of list items explored. In some apps, the effect of performing an event on
a list item is the same. For instance, in a music player with a list of playable songs,
clicking on each song will start playback. Thus, exploring just some of the items is
enough to extract the model.

 Ignored elements. Some events in specific elements could have non-desired
effects during the model extraction or the test execution. For instance, elements
that restore the account password or open the configuration settings. In this way,
they are systematically excluded from exploration.

 Predefined text for specific EditText fields. This is relevant in those apps whose
behaviour depends on the information provided in a form, for instance apps that
require logging. Observe that most of the configurable options are related to task
3, obtaining the list of visual elements that will be explored. In this way, the
exploration algorithm examines a reduced number of states. In contrast, the
configuration of input text for EditText fields, is required to correctly explore all
desirable app behaviours.

11.5.2 Exploration algorithm
The exploration algorithm defines a strategy to execute user events and traverse the different
app states. A state represents the app UI after performing a user event on a specific element,
that is; a state is a 3-tuple (xPath, event, dom), where xPath identifies the element in the
source DOM, event is the event performed on the element, and dom is the DOM after the event.
Transitions between states symbolise the execution of the event on the element stored in the
target state.

We have an exploration algorithm with a depth-first search strategy. The main data structures
are the set of visited states, the path (list) of states that leads to the current one, and the stack
of unvisited states. While there are unvisited states, the algorithm extracts one and requests
that the app controller performs the user event on the visual element, and stores the resulting
DOM. Then, the algorithm checks whether a state in visited has an equivalent DOM. If so, the
state is considered visited, and the app model is updated with a new transition from the parent
state to the visited state and backtracks. Otherwise, the state is new, and it is included in visited.
In addition, the app model is updated with the new state and the transition from its parent. If the
node has successors, that is visual elements that can handle user events, they are included in
the stack of unvisited states. Otherwise, the algorithm backtracks to a previous state.

11.5.2.1 Matching criterion
The matching criterion defines when two DOMs can be considered equivalent. If we consider
that two DOMs are equivalent when they are completely equal, the number of different states
explored can be very large. Thus, the objective of the matching criterion is to reduce the number
of different states, abstracting away specific content of the DOMs. The criterion is defined at
different levels as follows:

 Two DOMs are equivalent if they are in the same activity, have the same
hierarchy (hierarchy relation and number of nodes) and their nodes are
equivalent.

 Two nodes are equivalent if the following attributes are equal: resource-id, class,
package, checkable, clickable, enabled, scrollable, long-clickable.

 If the node is editable, the text attribute must be also equal. A node is editable if
its class is android.widget.EditText or inherits from this class. This rule is required
to generate models of forms.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 66/104

11.5.3 Backtracking
The exploration algorithm must backtrack when the explored state has been previously visited
or when it has no successors. The backtracking process consists in finding a state in path (from
last to first) that has at least one unexplored successor state, i.e.; there is a successor state in
unvisited. The backtracking process leaves this state in the last position of path. After that, the
algorithm requests that the app controller closes the app, and performs the list of user events
(on their corresponding elements) included in path. When the backtracking process ends, the
app will be ready to accept the user event of the next unexplored state.

11.5.4 Model parse
The model parser produces the app model that will be used to generate the app user flows. The
model parser acts when new states and/or transitions are added. The app model is described
with the modelling language presented in [2], which was also introduced in deliverable D3.2.
The language is based on nested state machines. The higher-level state machine represents
the app. It can contain one or several state machines associated with the different activities of
the app. At the lower level, the state machines represent the interaction of the user with the app.
Transitions represent the user events performed in specific visual elements (buttons, layouts,
etc.), and the source and target states symbolise the UI before and after the user event. There
is a special type of state, called the connection state, used to transit between state machines.
Connection states have two outgoing unlabelled transitions: one that points to a state of the
same state machine (returning state), and another to the target state machine. When a
connection state is reached, the app executes the target state machine, and when the target
state machine reaches the final state, the app comes back to the returning state of the source
state machine. Figure 44 shows the model of the Universal Music Player app.

Figure 44. Universal Music Player model

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 67/104

In Figure 44, the app model describes the desired/undesired behaviours that the developer
wishes to test. However, the app model depicts the possible interactions of the user. Although
the modelling language is very expressive, the current version of the model parser has the
following restrictions:

 Transitions between state machines of different views are allowed, but not transitions
between state machines of the same view.

 Transitions are not labelled with temporal constraints.

 Transitions to other apps are not included in the model.

 Initial states do not represent the state of the UI. Thus, transitions from initial states are
automatically fired, without any user event.

11.5.5 Evaluation
To evaluate the model extraction process, we have chosen five different apps from Google Play
Store and Android SDK: iDo Calculator, Kolab Notes, Topeka, Universal Music Player, and
WordPress. The model extraction is a configurable process, which allows us to select the
maximum depth explored (number of consecutive user events), number of list items explored,
and list of elements excluded. In addition, if the app requires a form to be filled in, we can provide
specific text input. Table 15 shows the different configurations for the evaluated apps, and Table
20, some results.

App max depth list items events el. excluded

iDo Calc. 5 1 click 0

UAMP 10 1 click 0

Kolab Notes 8 2 click 2

Topeka 15 1 click 0

Word Press 8 1 click 7
Table 19 Model extraction - Configuration

iDo Calculator1 is a calculator with simple and scientific modes. Text input is performed by
clicking independent buttons for each digit and arithmetic operation. The resulting app model
considers the click on each calculator button as a different user event. Although all these events
leave the app in the same state, the number of transitions is too high to produce the app user
flows later. In this situation, we recommend manually modifying the model to abstract the
buttons, for example by defining two types of buttons, numeric and arithmetic, and reducing the
number of transitions.

Universal Music Player (UAMP)2 is a sample app included in the Android SDK. It presents a list
of songs, classified by Genre that can be reproduced. From the point of view of the app model,
playing any of the songs has the same effect. Thus, we have configured the model extraction
to explore just the first item of each list. It is worth mentioning a limitation of the UIAutomator
dump process; it cannot obtain the DOM when the UI is changing dynamically, for instance if a

1 Available at https://play.google.com/store/apps/details?id=com.ibox.calculators
2 Available at https://github.com/googlesamples/android-UniversalMusicPlayer

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 68/104

video/song is playing. Thus, the application controller has to pause media playing before
obtaining the DOM.

Kolab Notes3 is an app for taking notes that can be local to, or shared by different devices using
an account. The model only considers the local mode. In addition, we have excluded two
elements from the exploration, because these elements show a colour picker that is currently
difficult to handle. With respect to the text input, we fill in the note title and content with the same
text in all executions. A note can be deleted, edited, etc., and these options are shown in a list,
thus, we have set the number of list items explored to 2.

Topeka4 is a Google sample for playing quizzes. Quiz questions are random, some of them are
answered by choosing from a possible four answers, and others by writing text. Thus, it is
difficult to systematically get the right answer. In addition, this issue can produce slightly different
models and complicates the automatic execution of app user flows. Therefore, the app
developer must provide us with a list of questions that are asked in the same order.

WordPress5 is an app for visualising and managing WordPress sites. The app has an initial
login form, thus we configure the user name and password with specific input text. In addition,
the app provides links to recover user name and password, create a new account or read the
Terms of Service. We have excluded these links from the exploration. Another peculiarity of this
app, is that it suggests sites to visit. The list of sites changes dynamically, and furthermore, the
sites can include different clickable elements. This situation is similar to the dynamic questions
in Topeka. However, in order to produce a first version of the model, we have limited the number
of sites explored by limiting the maximum depth.

Table 20. Model extraction - Results

App Activities State
machines

States Transitions Time
(min)

App
launches

iDo Calc. 2 2 9 93 49 23

UAMP 3 4 13 41 14 22

Kolab Notes 2 2 16 69 32 45

Topeka 3 3 16 51 33 38

Word Press 14 16 31 77 54 39

3 Available at https://play.google.com/store/apps/details?id=org.kore.kolabnotes.android
4 Available at https://github.com/googlesamples/android-topeka
5 Available at https://play.google.com/store/apps/details?id=org.wordpress.android

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 69/104

12 Internal test experiment
The results obtained during the performance testing of the testbed have been included in
D3.2.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 70/104

13 TRIANGLE testbed Release 4 specifications

Release 4 is expected to be available by the 30th of September 2018. The expected new
features for this release are grouped as follows:

 User point of view
o TRIANGLE report in PDF format. This report will provide a top-down view

to track the results in each of the domains and test cases executed.

o Extent the number of test cases supported including new domains:
 Reliability
 Network resources usage
 Network adaptation

o New network scenarios

 Capabilities

o Usage of model based testing for the automatic generation of app
models. The app user flows will be generated based on this model.

o New YAML file to provide extra information for the KPIs computation test
steps and the ETL framework to provide more accurate measurements.
This file will include, among others, the results obtained during the
calibration of the testbed.

o In the scope of Virtual Reality, Gaming and Augmented Reality

measurement capabilities, the robotic arm platform integrated in Release
3 (section 4.2.4) supports only Android devices. In Release 4, DEKRA in
tight the integration with Quamotion upgrading the platform to support
iOS devices. TRIANGLE testbed will potentially have the capability of
testing VR and Gaming applications on both Android and iOS devices.
Full support of Augmented Reality use case will remain outside the scope
of Release 4 due to the foreseen complexity of mocking the device
camera.

o Error Handling
 Re-initialize the testbed components.

 Testbed Access

o Improve utilization of the testbed through the inclusion of a mechanism
to schedule efficiently the execution of the campaigns.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 71/104

14 References

1. Android: Testing UI for Multiple Apps. https://developer.android.com/training/testing/ui-
testing/uiautomator-testing.html

2. Espada, A.R., Gallardo, M.M., Salmeron, A., Merino, P.: Using Model Checking to Generate
Test Cases for Android Applications. In: Pakulin, N., K. Petrenko, A., Schlinglo, B.H. (eds.) Proc.
10th Workshop on Model Based Testing. EPTCS, vol. 180, pp. 7{21. Open Publishing
Association (2015)

3. OpenStackClient,” [Online]. Available: https://docs.openstack.org/python-
openstackclient/latest/.

4. “OpenStack API Documentation,” [Online]. Available: https://developer.openstack.org/api-
guide/quick-start/.

5. “Authentication and API request workflow,” [Online]. Available:
https://developer.openstack.org/api-guide/quick-start/api-quick-start.html#authentication-
and-api-request-workflow.

6. “ETSI OSM,” [Online]. Available: https://osm.etsi.org/.
7. C. B. (ed.), “OSM White Paper - Release TWO Technical Overview,” April 2017. [Online].

Available: https://osm.etsi.org/images/OSM-Whitepaper-TechContent-ReleaseTWO-
FINAL.pdf.

8. “OSM Release TWO,” [Online]. Available:
https://osm.etsi.org/wikipub/index.php/OSM_Release_TWO.

9. “RO Northbound Interface,” [Online]. Available:
https://osm.etsi.org/wikipub/index.php/RO_Northbound_Interface.

10. “SO REST API (OSM RELEASE ONE),” [Online]. Available:
https://osm.etsi.org/wikipub/images/2/24/Osm-r1-so-rest-api-guide.pdf.

11. “Logs and troubleshooting (Release TWO),” [Online]. Available:
https://osm.etsi.org/wikipub/index.php/Logs_and_troubleshooting_(Release_TWO).

12. “OpenStack images,” [Online]. Available: https://docs.openstack.org/image-guide/obtain-
images.html.

13. “Reference VNF and NS Descriptors (Release TWO),” [Online]. Available:
https://osm.etsi.org/wikipub/index.php/Reference_VNF_and_NS_Descriptors_(Release_TWO.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 72/104

15 Annex 1: Test cases supported in Release 3.

15.1 Apps User Experience (AUE)

Common Services
- Open the AUT (Open the App)

- Menu Navigation

Content Distribution Streaming Services
- Non Interactive Playback

- Play and Pause

- Stop and Replay

- Search and Seek

- Rewind

- Playlist Skip Forward and Backward

- Download content for offline playing

- Fast Forward

Live Streaming Services
- Play Live Video from User

- Broadcast Live Video

Social Networking
- Picture Posting

- Video Posting

- Comment Posting

- File Posting

- Show Picture

- Play Video

- File Downloading

- Play Live Video from User

- Search Object

High Speed Internet
- Downloading files sequentially

- Uploading files sequentially

- Pause and Resume Download Transfer

- Pause and Resume Upload Transfer

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 73/104

Virtual Reality
- Virtual Experience Loading

- Virtual Scene Loading

Augmented Reality
- Load Augmentation Layer on Physical Marker

- Load Augmentation Layer at Location

15.2 Mobile Devices Energy Consumption (DEC)

Common Services
- Device ON

- Device ON with screen OFF

- Background state

Content Distribution Streaming Services
- Non Interactive Playback

- Play and Pause

- Rewind

- Download content for offline playing

- Non Interactive Playback with screen off

- Fast Forward

Live Streaming Services
- Play Live Video from User

- Broadcast Live Video

- Broadcast live video with screen off

Social Networking
- Picture Posting

- Video Posting

- File Posting

- Show Picture

- Play Video

- File Downloading

High Speed Internet
- Downloading files sequentially

- Uploading files sequentially

- Downloading several files simultaneously

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 74/104

- Uploading Several Files simultaneously

- Downloading a file with screen off

- Uploading a file with screen off

Virtual Reality
- Virtual Experience Loading

- Virtual Scene Loading

Augmented Reality
- Load augmentation layer on a physical marker

- Load Augmentation Layer at Location

- Augmented reality session

Gaming
- Start Game session

- Short Game session

- Long Game session

15.3 Apps Energy Consumption (AEC)

Common Services
- Device ON

- Open the app

- Background state

Content Distribution Streaming Services
- Non Interactive Playback

- Play and Pause

- Rewind

- Download content for offline playing

- Non Interactive Playback with screen off

- Fast Forward

Live Streaming Services
- Play Live Video from User

- Broadcast Live Video

- Broadcast live video with screen off

Social Networking
- Picture Posting

- Video Posting

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 75/104

- File Posting

- Show Picture

- Play Video

- File Downloading

High Speed Internet
- Downloading files sequentially

- Uploading files sequentially

- Downloading several files simultaneously

- Uploading Several Files simultaneously

- Downloading a file with screen off

- Uploading a file with screen off

Virtual Reality
- Virtual Experience Loading

- Virtual Scene Loading

Augmented Reality
- Load augmentation layer on a physical marker

- Load Augmentation Layer at Location

- Augmented reality session

Gaming
- Start Game session

- Short Game session

- Long Game session

15.4 Mobile devices User Experience with Reference Apps Test Specification
(DRA)

Content Distribution Streaming Services
- Non Interactive Playback

Social Networking
- Picture Posting

- Video Posting

- Comment Posting

High Speed Internet
- Downloading files sequentially

- Uploading files sequentially

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 76/104

15.5 Applications Device Resources Usage (RES)

Common Services
- Device ON

- Open the App

- Background state

Content Distribution Streaming Services
- Non Interactive Playback

- Play and Pause

- Rewind

- Download content for offline playing

- Non Interactive Playback with screen off

- Fast Forward

Live Streaming Services
- Play Live Video from User

- Broadcast Live Video

- Broadcast live video with screen off

Social Networking
- Picture Posting

- Video Posting

- File Posting

- Show Picture

- Play Video

- File Downloading

High Speed Internet
- Downloading files sequentially

- Uploading files sequentially

- Downloading several files simultaneously

- Uploading Several Files simultaneously

- Downloading a file with screen off

- Uploading a file with screen off

Virtual Reality
- Virtual Experience Loading

- Virtual Scene Loading

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 77/104

Augmented Reality
- Load augmentation layer on a physical marker

- Load Augmentation Layer at Location

- Augmented reality session

Gaming
- Start Game session

- Short Game session

- Long Game session

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 78/104

16 Annex 2: Measurements points (Instrumentation library)

16.1 Common Services

Login

 App Initialization Start - Login Required
eu.triangle_project.appinstr.co.Login.appInitializationStartLoginRequired()
Generated message:
Co\tLogin\tApp Initialization Start - Login Required

 App Initialization Start - Login Not Required

eu.triangle_project.appinstr.co.Login.appInitializationStartLoginNotRequired()
Generated message:
Co\tLogin\tApp Initialization Start - Login Not Required

 App Started

eu.triangle_project.appinstr.co.Login.appStarted()
Generated message:
Co\tLogin\tApp Started

Menu Navigation

 Start Menu Navigation
eu.triangle_project.appinstr.co.MenuNavigation.startMenuNavigation()
Generated message:
Co\tNavigation\tStart Menu Navigation

 Menu Navigation - App Ready

eu.triangle_project.appinstr.co.MenuNavigation.menuNavigationAppReady(<success
>)
Generated message:
Co\tNavigation\tMenu Navigation - App Ready\t<boolean success>

16.2 Content Distribution Streaming Services

Media File Playback

 Media File Playback - Start
eu.triangle_project.appinstr.cs.MediaFilePlayback.mediaFilePlaybackStart()
Generated message:
Cs\tPlayback\tMedia File Playback – Start

 Media File Playback - End

eu.triangle_project.appinstr.cs.MediaFilePlayback.mediaFilePlaybackEnd()
Generated message:
Cs\tPlayback\tMedia File Playback – End

 Media File Playback - First Picture

eu.triangle_project.appinstr.cs.MediaFilePlayback.mediaFilePlaybackFirstPictur
e()
Generated message:

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 79/104

 Cs\tPlayback\tMedia File Playback - First Picture

 Media File Playback - Video Resolution
eu.triangle_project.appinstr.cs.MediaFilePlayback.mediaFilePlaybackVideoResolu
tion(<resolution_x>, <resolution_y>)
Generated message:
Cs\tPlayback\tMedia File Playback - Video Resolution\t<int resolution_x>\t<int
resolution_y>

 Media File Playback - Content Stall Start

eu.triangle_project.appinstr.cs.MediaFilePlayback.mediaFilePlaybackContentStal
lStart()
Generated message:
Cs\tPlayback\tMedia File Playback - Content Stall Start

 Media File Playback - Content Stall End

eu.triangle_project.appinstr.cs.MediaFilePlayback.mediaFilePlaybackContentStal
lEnd()
Generated message:
Cs\tPlayback\tMedia File Playback - Content Stall End

Play and Pause

 Media File Playback - Pause
eu.triangle_project.appinstr.cs.PlayAndPause.mediaFilePlaybackPause(<success>)
Generated message:
Cs\tPlayPause\tMedia File Playback - Pause\t<boolean success>

 Media File Playback - Resume

eu.triangle_project.appinstr.cs.PlayAndPause.mediaFilePlaybackResume(<success>
)
Generated message:
Cs\tPlayPause\tMedia File Playback - Resume\t<boolean success>

Stop and Replay

 Media File Playback - Stop
eu.triangle_project.appinstr.cs.StopAndReplay.mediaFilePlaybackStop(<success>)
Generated message:
Cs\tStopReplay\tMedia File Playback - Stop\t<boolean success>

Search and Seek

 Media File Playback - Search
eu.triangle_project.appinstr.cs.SearchAndSeek.mediaFilePlaybackSearch(<success
>)
Generated message:
Cs\tSearchSeek\tMedia File Playback - Search\t<boolean success>

 Media File Playback - Seek

eu.triangle_project.appinstr.cs.SearchAndSeek.mediaFilePlaybackSeek(<success>)
Generated message:

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 80/104

Cs\tSearchSeek\tMedia File Playback - Seek\t<boolean success>

 Media File Playback - First Search Result

eu.triangle_project.appinstr.cs.SearchAndSeek.mediaFilePlaybackFirstSearchResu
lt()
Generated message:
Cs\tSearchSeek\tMedia File Playback - First Search Result

Rewind and Fast Forward

 Media File Playback - Rewind
eu.triangle_project.appinstr.cs.RewindandFastForward.mediaFilePlaybackRewind(<
success>)
Generated message:
Cs\tRewindFF\tMedia File Playback - Rewind\t<boolean success>

 Media File Playback - Fast Forward

eu.triangle_project.appinstr.cs.RewindandFastForward.mediaFilePlaybackFastForw
ard(<success>)
Generated message:
Cs\tRewindFF\tMedia File Playback - Fast Forward\t<boolean success>

Playlist Skip Forward and Backwards

 Playlist - Skip Forward
eu.triangle_project.appinstr.cs.PlaylistSkipForwardandBackward.playlistSkipFor
ward(<success>)
Generated message:
Cs\tSkipFwBw\tPlaylist - Skip Forward\t<boolean success>

 Playlist - Skip Backwards

eu.triangle_project.appinstr.cs.PlaylistSkipForwardandBackward.playlistSkipBac
kwards(<success>)
Generated message:
Cs\tSkipFwBw\tPlaylist - Skip Backwards\t<boolean success>

Download Media Content for Offline Playing

 Media Content Download - Start
eu.triangle_project.appinstr.cs.DownloadMediaContentForOfflinePlaying.mediaCon
tentDownloadStart()
Generated message:
Cs\tDownloadMedia\tMedia Content Download – Start

 Media Content Download - End

eu.triangle_project.appinstr.cs.DownloadMediaContentForOfflinePlaying.mediaCon
tentDownloadEnd(<success>)
Generated message: Cs\tDownloadMedia\tMedia Content Download - End\t<boolean
success>

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 81/104

16.3 Live Streaming Services

Live Video Playback

 Live Video Playback - Start
eu.triangle_project.appinstr.ls.LiveVideoPlayback.liveVideoPlaybackStart()
Generated message:
Ls\tLivePlayback\tLive Video Playback – Start

 Live Video Playback - End

eu.triangle_project.appinstr.ls.LiveVideoPlayback.liveVideoPlaybackEnd(<succes
s>)
Generated message:
Ls\tLivePlayback\tLive Video Playback - End\t<boolean success>

 Live Video Playback - First Picture

eu.triangle_project.appinstr.ls.LiveVideoPlayback.liveVideoPlaybackFirstPictur
e()
Generated message:
Ls\tLivePlayback\tLive Video Playback - First Picture

 Video Resolution

eu.triangle_project.appinstr.ls.LiveVideoPlayback.videoResolution(<resolution_
x>, <resolution_y>)
Generated message:
Ls\tLivePlayback\tVideo Resolution\t<int resolution_x>\t<int resolution_y>

 Live Video Playback - Stall Start

eu.triangle_project.appinstr.ls.LiveVideoPlayback.liveVideoPlaybackStallStart(
)
Generated message:
Ls\tLivePlayback\tLive Video Playback - Stall Start

 Live Video Playback - Stall End

eu.triangle_project.appinstr.ls.LiveVideoPlayback.liveVideoPlaybackStallEnd()
Generated message:
Ls\tLivePlayback\tLive Video Playback - Stall End

Broadcast Live Video

 Broadcast Live Video - Start
eu.triangle_project.appinstr.ls.BroadcastLiveVideo.broadcastLiveVideoStart()
Generated message:
Ls\tLiveBroadcast\tBroadcast Live Video – Start

 Broadcast Live Video - End

eu.triangle_project.appinstr.ls.BroadcastLiveVideo.broadcastLiveVideoEnd(<succ
ess>)
Generated message:
Ls\tLiveBroadcast\tBroadcast Live Video - End\t<boolean success>

 Broadcast Live Video - First Picture

eu.triangle_project.appinstr.ls.BroadcastLiveVideo.broadcastLiveVideoFirstPict

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 82/104

ure()
Generated message:
Ls\tLiveBroadcast\tBroadcast Live Video - First Picture

 Video Resolution

eu.triangle_project.appinstr.ls.BroadcastLiveVideo.videoResolution(<resolution
_x>, <resolution_y>)
Generated message:
Ls\tLiveBroadcast\tVideo Resolution\t<int resolution_x>\t<int resolution_y>

 Broadcast - Stall Start

eu.triangle_project.appinstr.ls.BroadcastLiveVideo.broadcastStallStart()
Generated message:
Ls\tLiveBroadcast\tBroadcast - Stall Start

 Broadcast - Stall End

eu.triangle_project.appinstr.ls.BroadcastLiveVideo.broadcastStallEnd()
Generated message:
Ls\tLiveBroadcast\tBroadcast - Stall End

16.4 Social Networking

Post Image

 Post Image - Start
eu.triangle_project.appinstr.sn.PostImage.postImageStart()
Generated message:
Sn\tPostImage\tPost Image – Start

 Post Image - End

eu.triangle_project.appinstr.sn.PostImage.postImageEnd(<success>)
Generated message:
Sn\tPostImage\tPost Image - End\t<boolean success>

Post Video

 Post Video - Start
eu.triangle_project.appinstr.sn.PostVideo.postVideoStart()
Generated message:
Sn\tPostVideo\tPost Video – Start

 Post Video - End

eu.triangle_project.appinstr.sn.PostVideo.postVideoEnd(<success>)
Generated message:
Sn\tPostVideo\tPost Video - End\t<boolean success>

Post Text

 Post Text - Start
eu.triangle_project.appinstr.sn.PostText.postTextStart()
Generated message:

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 83/104

Sn\tPostText\tPost Text – Start

 Post Text - End

eu.triangle_project.appinstr.sn.PostText.postTextEnd(<success>)
Generated message:
Sn\tPostText\tPost Text - End\t<boolean success>

Post File

 Post File - Start
eu.triangle_project.appinstr.sn.PostFile.postFileStart()
Generated message:
Sn\tPostFile\tPost File – Start

 Post File - End

eu.triangle_project.appinstr.sn.PostFile.postFileEnd(<success>)
Generated message:
Sn\tPostFile\tPost File - End\t<boolean success>

Show Image

 Social Networking - Image Download Start
eu.triangle_project.appinstr.sn.ShowImage.socialNetworkingImageDownloadStart()
Generated message:
Sn\tShowImage\tSocial Networking - Image Download Start

 Social Networking - Image Download End

eu.triangle_project.appinstr.sn.ShowImage.socialNetworkingImageDownloadEnd(<su
ccess>)
Generated message:
Sn\tShowImage\tSocial Networking - Image Download End\t<boolean success>

Play Video

 Social Networking - Play Video Start
eu.triangle_project.appinstr.sn.PlayVideo.socialNetworkingPlayVideoStart()
Generated message:
Sn\tPlayVideo\tSocial Networking - Play Video Start

 Social Networking - Play Video End

eu.triangle_project.appinstr.sn.PlayVideo.socialNetworkingPlayVideoEnd(<succes
s>)
Generated message:
Sn\tPlayVideo\tSocial Networking - Play Video End\t<boolean success>

 Social Networking - Video First Picture

eu.triangle_project.appinstr.sn.PlayVideo.socialNetworkingVideoFirstPicture()
Generated message:
Sn\tPlayVideo\tSocial Networking - Video First Picture

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 84/104

 Social Networking - Video Resolution
eu.triangle_project.appinstr.sn.PlayVideo.socialNetworkingVideoResolution(<res
olution_x>, <resolution_y>)
Generated message:
Sn\tPlayVideo\tSocial Networking - Video Resolution\t<int resolution_x>\t<int
resolution_y>

 Social Networking - Video Stall Start

eu.triangle_project.appinstr.sn.PlayVideo.socialNetworkingVideoStallStart()
Generated message:
Sn\tPlayVideo\tSocial Networking - Video Stall Start

 Social Networking - Video Stall End

eu.triangle_project.appinstr.sn.PlayVideo.socialNetworkingVideoStallEnd()
Generated message:
Sn\tPlayVideo\tSocial Networking - Video Stall End

File Downloading

 Social Networking - File Download Start
eu.triangle_project.appinstr.sn.FileDownloading.socialNetworkingFileDownloadSt
art()
Generated message:
Sn\tFileDownload\tSocial Networking - File Download Start

 Social Networking - File Download End

eu.triangle_project.appinstr.sn.FileDownloading.socialNetworkingFileDownloadEn
d(<success>)
Generated message:
Sn\tFileDownload\tSocial Networking - File Download End\t<boolean success>

Play Live Video from User

 Social Networking - Live Streaming Start
eu.triangle_project.appinstr.sn.PlayLiveVideoFromUser.socialNetworkingLiveStre
amingStart()
Generated message:
Sn\tPlayFromUser\tSocial Networking - Live Streaming Start

 Social Networking - Live Streaming End

eu.triangle_project.appinstr.sn.PlayLiveVideoFromUser.socialNetworkingLiveStre
amingEnd(<success>)
Generated message:
Sn\tPlayFromUser\tSocial Networking - Live Streaming End\t<boolean success>

 Social Networking - Live Streaming First Frame

eu.triangle_project.appinstr.sn.PlayLiveVideoFromUser.socialNetworkingLiveStre
amingFirstFrame()
Generated message:
Sn\tPlayFromUser\tSocial Networking - Live Streaming First Frame

 Social Networking - Live Streaming Resolution

eu.triangle_project.appinstr.sn.PlayLiveVideoFromUser.socialNetworkingLiveStre
amingResolution(<resolution_x>, <resolution_y>)

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 85/104

Generated message:
Sn\tPlayFromUser\tSocial Networking - Live Streaming Resolution\t<int
resolution_x>\t<int resolution_y>

 Social Networking - Live Streaming Stall Start

eu.triangle_project.appinstr.sn.PlayLiveVideoFromUser.socialNetworkingLiveStre
amingStallStart()
Generated message:
Sn\tPlayFromUser\tSocial Networking - Live Streaming Stall Start

 Social Networking - Live Streaming Stall End

eu.triangle_project.appinstr.sn.PlayLiveVideoFromUser.socialNetworkingLiveStre
amingStallEnd()
Generated message:
Sn\tPlayFromUser\tSocial Networking - Live Streaming Stall End

Search Object

 Social Networking - Search Start
eu.triangle_project.appinstr.sn.SearchObject.socialNetworkingSearchStart(<succ
ess>)
Generated message:
Sn\tSearch\tSocial Networking - Search Start\t<boolean success>

 Social Networking - Search First Result

eu.triangle_project.appinstr.sn.SearchObject.socialNetworkingSearchFirstResult
()
Generated message:
Sn\tSearch\tSocial Networking - Search First Result

16.5 High Speed Internet

File Download

 File Download - Start
eu.triangle_project.appinstr.hs.FileDownload.fileDownloadStart(<transfer_id>)
Generated message:
Hs\tDownload\tFile Download - Start\t<int transfer_id>

 File Download - End

eu.triangle_project.appinstr.hs.FileDownload.fileDownloadEnd(<transfer_id>,
<success>)
Generated message:
Hs\tDownload\tFile Download - End\t<int transfer_id>\t<boolean success>

File Upload

 File Upload - Start
eu.triangle_project.appinstr.hs.FileUpload.fileUploadStart(<success>)
Generated message:
Hs\tUpload\tFile Upload - Start\t<boolean success>

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 86/104

 File Upload - End
eu.triangle_project.appinstr.hs.FileUpload.fileUploadEnd(<transfer_id>,
<success>)
Generated message:
Hs\tUpload\tFile Upload - End\t<int transfer_id>\t<boolean success>

Pause and Resume Download

 File Download - Pause
eu.triangle_project.appinstr.hs.PauseandResumeDownload.fileDownloadPause(<succ
ess>)
Generated message:
Hs\tDownloadPause\tFile Download - Pause\t<boolean success>

 File Download - Resume

eu.triangle_project.appinstr.hs.PauseandResumeDownload.fileDownloadResume(<suc
cess>)
Generated message:
Hs\tDownloadPause\tFile Download - Resume\t<boolean success>

Pause and Resume Upload

 File Upload - Pause
eu.triangle_project.appinstr.hs.PauseandResumeUpload.fileUploadPause(<success>
)
Generated message:
Hs\tUploadPause\tFile Upload - Pause\t<boolean success>

 File Upload - Resume

eu.triangle_project.appinstr.hs.PauseandResumeUpload.fileUploadResume(<success
>)
Generated message:
Hs\tUploadPause\tFile Upload - Resume\t<boolean success>

16.6 Virtual Reality

Virtual Reality Session

 Scenario Selected
eu.triangle_project.appinstr.vr.VirtualRealitySession.scenarioSelected()
Generated message:
Vr\tVrSession\tScenario Selected

 3D Visual Context Loaded

eu.triangle_project.appinstr.vr.VirtualRealitySession._3DVisualContextLoaded()
Generated message:
Vr\tVrSession\t3D Visual Context Loaded

 Immersion Session Started

eu.triangle_project.appinstr.vr.VirtualRealitySession.immersionSessionStarted(
)
Generated message:

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 87/104

Vr\tVrSession\tImmersion Session Started

 Immersion Session Ended

eu.triangle_project.appinstr.vr.VirtualRealitySession.immersionSessionEnded(<s
uccess>)
Generated message:
Vr\tVrSession\tImmersion Session Ended\t<boolean success>

 Immersion Session Resolution

eu.triangle_project.appinstr.vr.VirtualRealitySession.immersionSessionResoluti
on()
Generated message:
Vr\tVrSession\tImmersion Session Resolution

16.7 Augmented Reality

Augmented Reality Session

 Aim To Physical Marker
eu.triangle_project.appinstr.ar.AugmentedRealitySession.aimToPhysicalMarker()
Generated message:
Ar\tArSession\tAim To Physical Marker

 Aim at Location

eu.triangle_project.appinstr.ar.AugmentedRealitySession.aimAtLocation()
Generated message:
Ar\tArSession\tAim at Location

 Virtual Layer Displayed

eu.triangle_project.appinstr.ar.AugmentedRealitySession.virtualLayerDisplayed(
)
Generated message:
Ar\tArSession\tVirtual Layer Displayed

 Augmentation Session Started

eu.triangle_project.appinstr.ar.AugmentedRealitySession.augmentationSessionSta
rted()
Generated message:
Ar\tArSession\tAugmentation Session Started

 Augmentation Session Ended

eu.triangle_project.appinstr.ar.AugmentedRealitySession.augmentationSessionEnd
ed(<success>)
Generated message:
Ar\tArSession\tAugmentation Session Ended\t<boolean success>

 Clear Augmentation Layer - Start

eu.triangle_project.appinstr.ar.AugmentedRealitySession.clearAugmentationLayer
Start()
Generated message:
Ar\tArSession\tClear Augmentation Layer – Start

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 88/104

 Clear Augmentation Layer - End
eu.triangle_project.appinstr.ar.AugmentedRealitySession.clearAugmentationLayer
End(<success>)
Generated message:
Ar\tArSession\tClear Augmentation Layer - End\t<boolean success>

16.8 Gaming

Game Session

 Game Session Start
eu.triangle_project.appinstr.ga.GameSession.gameSessionStart()
Generated message:
Ga\tGameSession\tGame Session Start

 Game Started

eu.triangle_project.appinstr.ga.GameSession.gameStarted()
Generated message:
Ga\tGameSession\tGame Started

 Game Session End

eu.triangle_project.appinstr.ga.GameSession.gameSessionEnd(<success>)
Generated message:
Ga\tGameSession\tGame Session End\t<boolean success>

 Game Content Stall Start

eu.triangle_project.appinstr.ga.GameSession.gameContentStallStart()
Generated message:
Ga\tGameSession\tGame Content Stall Start

 Game Content Stall End

eu.triangle_project.appinstr.ga.GameSession.gameContentStallEnd()
Generated message:
Ga\tGameSession\tGame Content Stall End

 Game Video Resolution

eu.triangle_project.appinstr.ga.GameSession.gameVideoResolution()
Generated message:
Ga\tGameSession\tGame Video Resolution

Pause and Resume

 Game Pause
eu.triangle_project.appinstr.ga.PauseandResume.gamePause(<success>)
Generated message:
Ga\tGamePause\tGame Pause\t<boolean success>

 Game Resume

eu.triangle_project.appinstr.ga.PauseandResume.gameResume(<success>)
Generated message:

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 89/104

Ga\tGamePause\tGame Resume\t<boolean success>

Saved Game Session

 Saved Game Load Start
eu.triangle_project.appinstr.ga.StartSavedGameSession.savedGameLoadStart()
Generated message:
Ga\tSavedGame\tSaved Game Load Start

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 90/104

17 Annex 3: Robotic Arm Remote Control Interface
This annex contains the details about the remote-control interface exposed by the robotic arm
platform. This functionality was implemented in Release 2 of the testbed and it is further
enhanced in Release 3 via a customized TAP plugin. This platform aims at the measurement
capabilities derived from the Virtual Reality, Gaming and Augmented Reality use cases.

SET WRITE MODE

Sets the capture mode.

 ON: It saves all the captured screenshots to disk. Use this mode to obtain the target
files for testing.

 OFF: It does not save the captured screenshots to disk. Use this mode for testing.

Syntax

APP:SETWRITEMODE mode

Parameters

RESET

Check that the robotic arm is operational and then it sets yaw, pitch and roll to 0.

Syntax

ARM:RESET

Parameters

None.

 Name Type Possible values

Mode string {on, off}

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 91/104

ROLL

Roll the arm to a given position at a given speed.

Syntax

ARM:ROLL value, speed

Parameters
Name Type Possible values

value integer -90, 90

speed enum VERY_LOW, LOW, MEDIUM, HIGH

PITCH

Pitch the arm to a given position at a given speed.

Syntax

ARM:PICTH value, speed

Parameters
Name Type Possible values

value integer -90, 90

speed enum VERY_LOW, LOW, MEDIUM, HIGH

YAW

Yaw the arm to a given position at a given speed.

Syntax

ARM:YAW value, speed

Parameters
Name Type Possible values

value integer -180, 180

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 92/104

speed enum VERY_LOW, LOW, MEDIUM, HIGH

START SCREEN CAPTURE

Starts screen mirroring engine.

Invoke this function before any other function from Device Interface group.

Syntax

OBJECT:START orientation

Parameters
Name Type Possible values

orientation integer {VERTICAL, HORIZONTAL}

STOP SCREEN CAPTURE

Stops screen mirroring engine.

Syntax

OBJECT:STOP

Parameters

None

TAP AT LENS CENTER

Taps at the lens (VR view) center.

This function does not provoke any movement of the arm.

Syntax

OBJECT:TAPATLENSCENTER

Parameters

None.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 93/104

FIND AND TAP AT OBJECT

Finds one object and tap at its center.

This function does not provoke any movement of the arm.

Syntax

OBJECT:FINDANDTAP delay, number, objects

Parameters
Name Type Possible values

delay double {0, 60}

number integer {1, 10}

objects string Target image file name. Size of “number”.

FIND AND SWIPE AT OBJECT

Finds one object from the device screen and swipe at its center.

This function does not provoke any movement of the arm.

Syntax

OBJECT:FINDANDSWIPE delay, number, objects

Parameters
Name Type Possible values

Delay double {0, 60}

Number integer {1, 10}

objects string Target image file name. Size of “number”.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 94/104

MOVE FIND AND TAP AT OBJECT

Moves the robotic arm until the device screen shows one object, and then it taps at the object
center.

Syntax

OBJECT:MOVEFINDANDTAP delay, number, objects

Parameters
Name Type Possible values

delay double {0, 60}

number integer {1, 10}

objects string Target image file name. Size of “number”.

MOVE FIND AND AIM AT OBJECT

Moves the robotic arm until the device screen shows one object, and then it moves the robotic
arm until the object gets at the center of the lens aim.

Syntax

OBJECT:MOVEFINDANDAIM delay, number, objects

Parameters
Name Type Possible values

delay double {0, 60}

number integer {1, 10}

objects string Target image file name. Size of “number”.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 95/104

FIND AND MEASURE

Measures the time until finds one object in the device screen. This function implements the
performance indicator “time to load an object”.

This function does not provoke any movement of the arm.

Syntax

OBJECT:FINDANDMEASURE number, objects

Parameters
Name Type Possible values

number integer {1, 10}

objects string Target image file name. Size of “number”.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 96/104

18 Annex 4: OpenStack API access

In the URLs, the service names need to be replaced with IP addresses from section 8.1.6.

Identity API: http://<Keystone>:5000/v3
The Identity service provided by the Keystone package provides authentication tokens that are
used by the other REST APIs to authenticate and authorize the client. A client first needs to
authenticate itself and the Identity Service and request an authentication token, this
authentication token can then be used for a period of time to make follow-up requests to the
other REST APIs. The exact process is described in [5], though summarizes to the following
actions

1. Make an HTTP POST request to the Identity API service containing the headers and
data from Table 21, with variables filled in from Table 10:

Table 21: Identity Service API Request Token

Content-Type: application/json

{

 "auth": {

 "identity": {

 "methods": [

 "password"

],

 "password": {

 "user": {

 "domain": {

 "name": "$OS_USER_DOMAIN_NAME"

 },

 "name": "$OS_USERNAME",

 "password": "$OS_PASSWORD"

 }

 }

 },

 "scope": {

 "project": {

 "domain": {

 "name": "$OS_PROJECT_DOMAIN_NAME"

 },

 "name": "$OS_PROJECT_NAME"

 }

 }

 }

}

2. In response, if authentication succeeds, the Identity API will respond similar to Table 22,

where HTTP 201 created indicates a successful authentication, the HTTP Header X-
Subject-Token indicated the token, and response DATA provides further information
about the session and user account.

Table 22: Identity API Service Authentication Token Response

HTTP 201 Created

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 97/104

X-Subject-Token: d55fa31bec30448386e34e082aa6e0fe
{

 "token": {

 "is_domain": false,

 "methods": [

 "password"

],

 "roles": [

 {

 "id": "9fe2ff9ee4384b1894a90878d3e92bab",

 "name": "_member_"

 },

 {

 "id": "86599d047b944cf4ac64dc5b676518a0",

 "name": "Admin"

 }

],

 "expires_at": "2017-12-13T15:24:39.000000Z",

 "project": {

 "domain": {

 "id": "default",

 "name": "Default"

 },

 "id": "086a8aacd0bc4aaebdb87ba3f8e8a556",

 "name": "admin"

 },

 "user": {

 "password_expires_at": null,

 "domain": {

 "id": "default",

 "name": "Default"

 },

 "id": "056b7395f54c486a85e130f4c69bdc74",

 "name": "admin"

 },

 "audit_ids": [

 "aZRwAlMBRGa_uhjOugT__Q"

],

 "issued_at": "2017-12-13T14:24:39.000000Z"

 }

}

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 98/104

3. Store the token returned in HTTP Header X-Subject-Token into the variable $OS_TOKEN and
include it in the HTTP Header X-Auth-Token in future requests to the other REST APIs. For
example, using curl you can request an overview of all other available APIs from the Identity
service: ̀ curl -v -H "X-Auth-Token: $OS_TOKEN" $OS_AUTH_URL/auth/catalog | python
-m json.tool`. Additionally, you may need the project-id of the OpenStack project you’re
authenticated to which is stored in the JSON-encapsulated response in the property
token.project.id and store it into $OS_PROJECT_ID.

Using this token, the following APIs can be accessed (replace service names with IP addresses from
Section 8.1.6 and use the appropriate $OS_PROJECT_ID from a project you are authorized on):

Name Service Type URL
Cinder V3 Volume http://<Cinder-API>:8776/v3/<$OS_PROJECT_ID>
Cinder V2 Volume http://<Cinder-API>:8776/v2/<$OS_PROJECT_ID>
Glance Image http://<Glance>:9292
Nova Compute http://<Nova-Cloud-Controller>:8774/v2/<$OS_PROJECT_ID>
Keystone Identity http://<Keystone>:5000/v2.0
Neutron Network http://<Neutron-API>:9696
Placement
(Nova)

Compute
Placement

http://<Nova-Cloud-Controller>:8778

Heat Orchestration6 http://<Heat>:8004/v1/<$OS_PROJECT_ID>
Heat-CFN CloudFormation-

compatible
Orchestration

http://<Heat>:8000/v1

The OpenStack API Documentation (OpenStack API Documentation, sd) give a full description of all APIs
and their exact commands.

6 Note: a different solution, i.e., Open Source Mano, is used as the orchestrator.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 99/104

19 Annex 5: Sample work-flow
In this annex we will present a sample workflow which can be used by the experimenter using MANO
integrated with TAP. We will show steps needed to create a basic TRIANGLE topology and perform a
basic connectivity test. We assume the experimenter is using the infrastructure (“Stable Cloud5”)
described in the previous sections of this document.

19.1 Bootstrapping environment
We will describe the one-time-effort actions required to bootstrap the environment for a particular
experiment.

19.1.1 Key deployment

Most of the VM images which are to be used in OpenStack environment use the cloud-init mechanism to
preconfigure the images, among others, ssh keys are injected to the instance for authentication.
Frequently, password logins are disabled due to security reasons and the only way to access an instance
is to have public-private key pairs deployed. MANO allows for automation of this process but first needs
to have the public key(s) stored.

1. Open MANO GUI at https://10.20.2.44:8443/launchpad and log in (default credentials are
admin/admin, though these may be changed)

2. Navigate to Launchpad->SSH keys menu
3. Insert a public key and give it a name which will be used in further steps to identify the specific

user’s identity or machine’s deployment key.

19.1.2 Image deployment

Virtual Machines instantiated by MANO are based on the images managed by OpenStack Glance service.
The delivered Stable Cloud5 is pre-populated with common images, however, the experimenters may
need to upload their specific images.

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 100/104

1. Download (or prepare) an image source file. The sources for popular images are listed here: 12.
2. Log in to the OpenStack Dashboard at http://10.20.2.43 ; the default credentials are admin/admin

though may be changed.
3. Navigate to Project -> Compute -> Images and press “Create Image” button, see Figure 45.
4. Give an image a name (it will be used to identify it by MANO later on), choose the source file

(downloaded or prepared), configure the right format and give RAM and disk parameters
(observe, that RAM is given in MB while the disk size is given in GB) and press the “Create
Image” button, see Figure 46

Figure 45: Image creation (part 1)

19.2 Preparing descriptors
MANO uses Descriptor packages for Virtual Network Functions (VNFDs) and Network Services (NSDs).
In their most basic form, these are yaml configuration files archived and compressed through tar and gzip,
possibly accompanied by some other auxiliary files (e.g., icons). A collection of sample descriptors can
be found here: [13]. We will now demonstrate how to prepare a basic TRIANGLE topology which
constitutes of three client machines and one server, connected to the same network.

19.2.1 Preparing Virtual Network Function Descriptor

1. Open MANO GUI at https://10.20.2.44:8443/ and log in (default credentials are admin/admin)
2. Navigate to the Catalog menu and press “+ Add VNFD” button. A new VNF and VDU (Virtual

Deployment Unit) appear, see Figure 47
3. Click on the VNF in the main part of the screen and change its name and (after pressing “more”

in the right part of the screen) its ID, see Figure 48. After pressing “Update” a new VNFD (with
its newly chosen name) will appear on the right hand side due to selecting a new ID. Make sure
you continue with configuring this specific VNFD. An old VNFD (vnfd-1) can be deleted.

4. Scroll down to “Connection Point” (“more” must be pressed earlier) and rename it to “eth0” (Figure
49)

5. Click on VDU in the middle of a screen. Adjust its Name, VM flavor (make sure the values here
meet the minimal requirements for a given image, see Section 19.1.2), Image name (make sure
it exists in OpenStack), External Interface (changed in previous bullet) and ID, see Figure 50.
Press Update to save the changes.

6. Return to the VNF config and adjust connectivity, as VDU id has just been changed (Figure 51)
7. For the reference, the yaml configurationfile containing the resulting descriptors is provided in

Table 23

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 101/104

Figure 46: Image creation (part 2)

Figure 47: VNFD creation (adding VNDF 1)

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 102/104

Figure 48: VNFD creation (name and ID)

Figure 49: VNFD creation (connectivity)

Figure 50: VNFD creation (VDU details)

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 103/104

Figure 51: VNFD creation (VNF connectivity)

Table 23: Sample client VNFD

ubuntu_2c_2G_1iface_vnf

 id: "ubuntu_2c_2G_1iface_vnfd"

 name: "ubuntu_2c_2G_1iface_vnf"

 short-name: "ubuntu_2c_2G_1iface_vnf"

 vendor: "TNO"

 description: "A simple VNF descriptor w/ one VDU"

 version: "1.0"

 mgmt-interface:

 vdu-id: "ubuntu_2c_2G_1iface_vnfd-VM"

 connection-point:

 -

 name: "eth0"

 type: "VPORT"

 vdu:

 -

 id: "ubuntu_2c_2G_1iface_vnfd-VM"

 name: "ubuntu_2c_2G_1iface_vnfd-VM"

 description: "ubuntu_2c_2G_1iface_vnfd-VM"

 vm-flavor:

 vcpu-count: 2

 memory-mb: 2048

Document: ICT-688712-TRIANGLE/D3.4

Date: 29/03/2018 Dissemination: PU

Status: Final Version: 1.0

TRIANGLE PU 104/104

 storage-gb: 20

 guest-epa:

 cpu-pinning-policy: "ANY"

 image: "Ubuntu 16.04 LTS"

 supplemental-boot-data:

 boot-data-drive: "false"

 external-interface:

 -

 name: "eth0"

 vnfd-connection-point-ref: "eth0"

 virtual-interface:

 type: "OM-MGMT"

 vpci: "0000:00:0a.0"

 bandwidth: 0

 service-function-chain: "UNAWARE"

 meta: "{\"containerPositionMap\":{\"a66a5a22-5fc0-4c82-87fe-
a4a41a90751d\":{\"top\":30,\"left\":260,\"right\":510,\"bottom\":85,\"widt
h\":250,\"height\":55},\"a66a5a22-5fc0-4c82-87fe-a4a41a90751d/vdu-
1\":{\"top\":130,\"left\":260,\"right\":510,\"bottom\":185,\"width\":250,\
"height\":55},\"ubuntu_2c_2G_1iface_vnf\":{\"top\":30,\"left\":260,\"right
\":510,\"bottom\":85,\"width\":250,\"height\":55},\"ubuntu_2c_2G_1iface_vn
f/vdu-
1\":{\"top\":130,\"left\":260,\"right\":510,\"bottom\":185,\"width\":250,\
"height\":55},\"ubuntu_2c_2G_1iface_vnf/ubuntu_2c_2G_1iface_vnf\":{\"top\"
:130,\"left\":260,\"right\":510,\"bottom\":185,\"width\":250,\"height\":55
},\"ubuntu_2c_2G_1iface_vnf/ubuntu_2c_2G_1iface_vnfd-
\":{\"top\":130,\"left\":260,\"right\":510,\"bottom\":185,\"width\":250,\"
height\":55},\"ubuntu_2c_2G_1iface_vnf/ubuntu_2c_2G_1iface_vnfd-
VM\":{\"top\":130,\"left\":260,\"right\":510,\"bottom\":185,\"width\":250,
\"height\":55},\"ubuntu_2c_2G_1iface_vnfd\":{\"top\":30,\"left\":260,\"rig
ht\":510,\"bottom\":85,\"width\":250,\"height\":55},\"ubuntu_2c_2G_1iface_
vnfd/ubuntu_2c_2G_1iface_vnfd-
VM\":{\"top\":130,\"left\":260,\"right\":510,\"bottom\":185,\"width\":250,
\"height\":55}}}"

