

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU

Project: H2020-ICT-688712

Project Name:

5G Applications and Devices Benchmarking (TRIANGLE)

Deliverable D3.5

Report on the implementation of testing
framework Release 4

Date of delivery: 04/06/2019 Version: 1.2
Start date of Project: 01/01/2016 Duration: 36 months

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU

Deliverable D3.5
Report on the implementation of testing framework

Release 4

Project Number: ICT-688712

Project Name: 5G Applications and Devices Benchmarking

Project Acronym TRIANGLE

Document Number: ICT-688712-TRIANGLE/D3.1

Document Title: Report on the implementation of testing framework
Release 4

Lead beneficiary: Universidad de Málaga

Editor(s): Universidad de Málaga

Authors: Keysight Technologies Belgium (Michael Dieudonne),
Keysight Technologies Denmark (Andrea Cattoni,
German Corrales Madueño, Marek Rohr), Universidad
de Malaga (Álvaro Martín, Almudena Díaz, Pedro
Merino, Laura Panizo Jaime, Bruno García, Guillermo
Chica, Maria del Mar Gallardo), Redzinc Services
Limited (Jeanne Caffrey, Donal Morris, Ricardo
Figueiredo, Terry O'Callaghan, Pilar Rodríguez), DEKRA
Testing and Certification S.A.U (Carlos Cárdenas, Janie
Baños, Oscar Castañeda, J.C. Mora), Quamotion
(Frederik Carlier, Bart Saint Germain), TNO (Lucía
D’Acunto, Piotr Zuraniewski, Niels van Adrichem

Dissemination Level: PU

Contractual Date of Delivery: 30/10/2018

Work Package Leader: Universidad de Málaga

Status: Final

Version: 1.2

File Name: TRIANGLE_Deliverable_D3.5_v1.2 FINAL
Abstract

This deliverable provides the description of the TRIANGLE testbed compiling the work done
during the four releases in which the development process was divided. It presents the
features provided by the TRIANGLE Portal and all the components integrated into the
testbed.

Keywords

Architecture, workflow, deployment, orchestration, test case, Portal, measurements tools,
RAN, EPC, SDN, UEs

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU

Document history

V1.0 Initial release of the document

V1.1 Numbering problem in the table of contents has been fixed

Section 10.5 describing DASH client has been removed as it is not a component
of the testbed. It was used to demonstrate the functionaly of the features
provided by the TNO extension.

Table 5 has been updated with the extensions for Video quality evaluation and
the MEC extension.

Extensions coming from the open calls have been clearly identified in sections
10 and section 11. The testbed release integrating these extensions has been
also indicated.

MEC User Manual added in Annex 11

Figure 9 has been updated with the rest of the main components of the testbed
architecture. Android and iOS footnote has been added.

V1.2 Moved Section 11.4 to Section 10.5 to clarify the technology was implemented
in Rel 4.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU

Executive summary
This document is the fifth deliverable of WP3. WP3 is responsible for the development of the
testing framework in TRIANGLE. The testing framework covers all the software that configures
and manages the testbed infrastructure.

The document is a compilation of the latest version of the testbed plus information about
previous releases (reported in D3.1, D3.2, D3.4). In particular, the document describes the final
implementation of the TRIANGLE testbed including the final version of the Portal, the final set
of features supported by the testbed, the reports auto generated after post-processing the
measurements collected during the testing campaigns and the control interface developed to
manage each of the components of the testbed.

It is a self-contained document serving as a general guide to all the features supported by the
TRIANGLE testbed. The focus of the document is to provide a clear understanding of how the
testbed has been implemented to deliver the testing and certification services offered by
TRIANGLE.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU

Contents

1 Introduction .. 1

1.1 Why TRIANGLE .. 1

1.2 The TRIANGLE Testbed and its Users .. 1

1.3 Testbed High-Level Architecture ... 2

1.4 Testbed workflow .. 5

1.5 TRIANGLE testbed releases ... 6

2 TRIANGLE Testbed Architecture.. 12

2.1 Testbed Infrastructure ... 12

2.2 Software Architecture .. 13

2.3 Software Deployment .. 14

2.4 Testbed Management Workflow .. 15

3 Interface and Visualization (Portal) ... 17

3.1 Organization .. 17

3.2 Data .. 18

3.3 Implementation ... 19

3.4 Information Provided by Users .. 20

3.5 Backend REST API ... 23

3.6 Test Cases Supported... 24

3.7 Traffic capture ... 25

3.8 TRIANGLE Mark and Spider Diagram ... 27

3.9 Remote screen .. 27

3.10 Booking System .. 29

3.11 Additional Features ... 31

4 Orchestration.. 36

4.1 Test Automation Platform (TAP) .. 36

4.2 Quamotion Automation Tools .. 44

4.3 Secure Execution of Scripts Generated by Users .. 52

4.4 Android Debug Bridge (ADB) .. 52

4.5 PTP Synchronization ... 53

4.6 Orcomposutor ... 53

4.7 Execution Manager ... 57

5 Measurements and Data Collection .. 61

5.1 TestelDroid Monitoring Tool .. 61

5.2 DEKRA Performance Tool .. 63

5.3 Power Analyzer ... 82

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU

5.4 Apps Instrumentation .. 85

5.5 OMF Measurement Library (OML) .. 90

5.6 KPIs Computation ... 94

5.7 Metrics and Mark Computation .. 99

5.8 Support for testbed characterization and calibration .. 103

5.9 Network scenarios for Device Radio Performance domain 107

6 Radio Access Network (RAN) .. 110

6.1 eNodeB Emulator .. 110

6.2 RF switches .. 111

7 Evolved Packet Core (EPC) ... 113

7.1 Features and Configurable Parameters ... 113

7.2 Measurement and Behaviour .. 116

7.3 TRIANGLE EPC Plugin ... 118

8 Transport .. 121

8.1 SDN .. 121

8.2 Emulated impairments... 123

8.3 Virtual Path Slice Engine ... 124

8.4 TRIANGLE Configurable Traffic Shaping API .. 125

9 User Equipment (UE) and Accessories .. 135

9.1 Supported UEs .. 135

9.2 DUT HUB .. 135

9.3 Android Support .. 136

9.4 iOS Support .. 136

9.5 IoT devices performance characterization ... 136

10 Local Applications and servers ... 139

10.1 Servers virtualization (TNO extension Release 3) ... 139

10.2 MANO – Management and Network Orchestration (TNO extension Release 3) 148

10.3 MEC (Mobile Edge Computing) (CNIT Genova Extension Release 4) 155

10.4 DANE (DASH-Aware Network Element) (TNO extension Release 3) 158

10.5 Video quality-of-experience assessment extension (Streamowl extension Rel. 4) . 164

11 Additional features for testing ... 168

11.1 GPS Emulation ... 168

11.2 Virtual Reality Applications Testing ... 172

11.3 Model-based testing extension .. 181

12 References ... 200

13 Annex 1: Portal Database .. 203

14 Annex 2: Portal API REST.. 206

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU

14.1 Devices ... 206

14.2 Users .. 206

14.3 Apps .. 207

14.4 Features .. 208

14.5 Test cases ... 209

14.6 Scenarios .. 211

14.7 Campaigns .. 211

15 Annex 3: Measurements points (Instrumentation library) .. 212

15.1 Common Services ... 212

15.2 Content Distribution Streaming Services ... 212

15.3 Live Streaming Services .. 215

15.4 Social Networking ... 216

15.5 High Speed Internet .. 219

15.6 Virtual Reality .. 220

15.7 Augmented Reality .. 221

15.8 Gaming ... 222

16 Annex 4: OpenStack API access .. 224

17 Annex 5: Sample work-flow .. 227

17.1 Bootstrapping environment ... 227

17.2 Preparing descriptors .. 228

18 Annex 6: DEKRA Performance Tool Capabilities ... 234

18.1 QoS Measurements .. 234

18.2 API-Driven QoE Measurements .. 234

18.3 RF and System Measurements at UE ... 234

18.4 Built-in Traffic Generator ... 235

19 Annex 7: WLAN Automation and LWIP validation results ... 236

20 Annex 8: Robotic Arm Implementation Details.. 239

21 Annex 9: TRIANGLE Report ... 248

22 Annex 11: TRIANGLE Mark ... 250

22.1 KPI computation .. 250

22.2 TRIANGLE mark ... 251

23 Annex 10: DEKRA wireless Performance Tool Automation Interface 252

23.1 Interface Description ... 252

23.2 Recommended automation methodology .. 252

23.3 Input XML file .. 253

23.4 Stdin Interface ... 256

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU

23.5 Stdout Interface ... 256

24 Annex 11: MEC User Manual ... 261

24.1 Creation of a Service Template ... 261

24.2 MEC Service Setup and Orchestration .. 271

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU

List of Figures
Figure 1 Overview of the TRIANGLE testing workflow ... 1

Figure 2 High-Level architecture of the testbed ... 3

Figure 3 TRIANGLE testbed high-level workflow ... 6

Figure 4 Testbed physical infrastructure .. 12

Figure 5 Testbed software architecture ... 13

Figure 6 Testbed managment workflow ... 15

Figure 7 Control and management entities of the testbed ... 16

Figure 8 Uses cases .. 17

Figure 9 Overview of Portal organization for app developers ... 18

Figure 10 Main entities for app developers in the TRIANGLE Portal 19

Figure 11 Features selection and measurements points ... 20

Figure 12 Allow uploading PowerShell files (.ps1) ... 22

Figure 13 Display powershell script content... 22

Figure 14 The Portal identifies the available test cases and presents a description for each one
 .. 24

Figure 15 Measurement points required to compute the measurements specified in the test
cases... 25

Figure 16 ‘Capture Traffic’ selector .. 26

Figure 17 Display 'Capture Traffic' selection .. 26

Figure 18 TRIANGLE mark ... 27

Figure 19 View of the screenshot feed feature provided by Quamotion. 28

Figure 20 The New Reservation Page allows a user to select a slot time to use the Portal
Testbed ... 30

Figure 21 Calendar interface. It shows the reservations made. Clicking on any day will take you
to the New Reservation Page. ... 30

Figure 22 Disabled 'View screen feed' in Standard Campaign ... 31

Figure 23 Enabled 'View screen feed' in Custom Campaign .. 32

Figure 24 Show 'Execution Task ID' in Campaign Execution ... 32

Figure 25 Show 'Certification' type in Campaign creation .. 33

Figure 26 Show Campaign type in Campaigns view .. 33

Figure 27 Show Campaign type in each Campaign and remove Scenario and Control Traffic if
type 'Certification’ .. 34

Figure 28 Show Campaign type in each Campaign and show Control Traffic if type 'Custom’ 34

Figure 29 TRIANGLE Report Generation flow ... 35

Figure 30 TAP architecture, showing core sequencing software engine. 36

Figure 31 TAP’s Core Sequencing Engine and GUI .. 37

Figure 32 TAP’s TAP’s Timing Analyzer test step’s execution information 37

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU

Figure 33 TAP Result Viewer provides a quick and flexible test run data visualization. 38

Figure 34 External Parameter setting & command line execution .. 39

Figure 35 TAP pluging for the hardware and software components of the testbed 40

Figure 36 Quamotion WebDriver script editor .. 50

Figure 37 Userflow execution architecture ... 52

Figure 38 ADB usage scenario .. 53

Figure 39 Testbed scheduling and management architecture ... 56

Figure 40 Campaign retries in the TRIANGLE portal ... 57

Figure 41 Testbed scheduling and management architecture ... 58

Figure 42 Pending campaigns in the TRIANGLE portal ... 58

Figure 43 Campaign execution information ... 59

Figure 44 Cancelling a running campaign ... 59

Figure 45 Campaign information ... 60

Figure 46 Timestamps for OWD measurements .. 64

Figure 47 Web Browsing measurements ... 73

Figure 48 TRIANGLE WLAN AP Automation ... 75

Figure 49 TRIANGLE configuration for WLAN AP automation feature validation 77

Figure 50 DEKRA Tool TAP Instrument .. 79

Figure 51 DEKRA Tool TAP DUT .. 80

Figure 52 DEKRA Tool TAP Test Step (YouTube test) .. 81

Figure 53 DEKRA Tool TAP Run/Stop Test .. 81

Figure 54 Keysight N6705B DC Power Analyzer ... 83

Figure 55 Meter View; all 4 outputs can be viewed simultaneously 83

Figure 56 Scope View; voltage and current traces are displayed... 84

Figure 57 Control and Analysis Software for N6705B Screenshot ... 85

Figure 58 Overview of organization of instrumentation classes for a subset of KPIs 87

Figure 59 Snippet for generating measurement points with the same format that the
instrumentation library ... 90

Figure 60 OML architecture ... 91

Figure 61 OML database for an experiment with a single measurement point 91

Figure 62 Main classes of TAP plugin for OML .. 94

Figure 63 Example of TAP using OML TAP plugin .. 94

Figure 64 Configuration parameters on the Test Case Labeller step 95

Figure 65 Configuration parameters on the RES step. All steps include the same basic settings.
 .. 96

Figure 66 Additional settings on the AUE step ... 96

Figure 67 Use of calibration for AEC domain measurements post-processing 97

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU

Figure 68 Use of calibration for RES domain measurements post-processing 97

Figure 69 Example of Reliability KPIs post-processing test step.. 99

Figure 70 Post-processing and reporting tools .. 100

Figure 71 Post-processing step 1 .. 101

Figure 72 Post-processing steps 2, 3, 4 and 5. .. 102

Figure 73 Iterative population of the calibration YAML file ... 104

Figure 74 RF DL compensation plugin .. 105

Figure 75 Offsetting the DL RF power values in UXM control panel 105

Figure 76 Step settings for the PC latency characterization test step 106

Figure 77 Step settings for the Android latency characterization test step 107

Figure 78 New network scenarios for RFP domain testing .. 108

Figure 79 TAP Template for RFP Test Cases ... 109

Figure 80 Keysight RF Switch Product Number L7104A ... 111

Figure 81 Keysight 11713C LXI-Compliant Attenuator/Switch Driver 112

Figure 82 Polaris Networks EPC GUI and TCL API ... 113

Figure 83 EPC architecture ... 119

Figure 84 Software defined network deployment at TRIANGLE testbed 121

Figure 85 ONOS Interface ... 123

Figure 86 VPS engine usage example .. 125

Figure 87 Location of the Traffic Shaper within the testbed ... 127

Figure 88 Virtual network adapter with Linux packet filters .. 128

Figure 89 Configuration of the Linux network interfaces by the Traffic Shaper API 128

Figure 90 Traffic Shaper standalone application algorithm overview 129

Figure 91 Sudoers file after edits ... 131

Figure 92 Traffic shaping testing in Urban Pedestrian network scenario 133

Figure 93 IoT Power & Performance characterization testbed ... 137

Figure 94 Synchronization of IoT Protocol & PHY messages with power consumption 138

Figure 95 Architecture overview .. 141

Figure 96 Hypervisor configuration through virt-manager .. 142

Figure 97 Overview of nodes deployed through MAAS, cloud-related nodes are initiated and
controlled through Juju. ... 142

Figure 98 Network overview of networks managed by lib-virt .. 144

Figure 99 Juju model describing functional elements and their connections 146

Figure 100 OSM mapping to ETSI NFV MANO ... 149

Figure 101 State of an OSM VM after OSM installation ... 150

Figure 102 OSM GUI sample screenshot .. 153

Figure 103 Instantiation ... 154

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU

Figure 104 Logging and debug via OSM GUI .. 154

Figure 105 Logging and debug via OSM GUI .. 155

Figure 106 Deployment of MEC service instances in the TRIANGLE testbed. 156

Figure 107 Scrrenshots of the OpenStack Horizon dashboard .. 157

Figure 108 Integration of MEC functionalities in the TRIANGLE testbed 158

Figure 109 SAND architecture within the TRIANGLE testbed, including DANE, DASH streaming
server and DASH VR app.. 159

Figure 110 Setting the DANE’s bandwidth within a TAP’s test scenario 160

Figure 111: Concept of the extension for adaptive video streaming performance evaluation.
 .. 165

Figure 112: Dashboard for the video quality performance monitoring. 166

Figure 113: Detailed session information of the quality monitoring dashboard. 167

Figure 114 Connecting USRP output to the UE GPS antenna ... 169

Figure 115 Google Maps route and XML file ... 172

Figure 116 VR test module architecture .. 173

Figure 117 OpenCV system reference .. 177

Figure 118 VR test solution validation ... 179

Figure 119 VR validation ... 180

Figure 120 Universal Music Player model ... 183

Figure 121 Universal Music Player GUI ... 184

Figure 122 Extract of PROMELA specification for test case generation............................... 185

Figure 123 Pruning never claim as automaton .. 186

Figure 124 Model extraction overview ... 188

Figure 125 Universal Music Player model ... 191

Figure 126 App model XML schema ... 193

Figure 127 TRIANGLE portal - model based testing campaign ... 196

Figure 128 Example of requirement in xml format ... 197

Figure 129: Example inserting a public key ... 227

Figure 130: Image creation (part 1) ... 228

Figure 131: Image creation (part 2) ... 229

Figure 132: VNFD creation (adding VNDF 1) .. 229

Figure 133: VNFD creation (name and ID) .. 230

Figure 134: VNFD creation (connectivity) .. 230

Figure 135: VNFD creation (VDU details) .. 231

Figure 136: VNFD creation (VNF connectivity) .. 231

Figure 137 DEKRA wireless Performance Automation Interface (rel'1) 252

Figure 138: Images management .. 261

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU

Figure 139: Images creation .. 262

Figure 140: Network topology .. 263

Figure 141: Network topology .. 264

Figure 142: Network creation (I) .. 265

Figure 143: Network creation (II) ... 266

Figure 144: Network topology .. 267

Figure 145: Instance configuration (I) .. 268

Figure 146: Instance configuration (II) ... 269

Figure 147: Flavors ... 270

Figure 148: Instance configuration .. 271

Figure 149: TAP plugin config file .. 272

Figure 150: TAP environment .. 272

Figure 151: OpenVolcano plugin ... 273

Figure 152: TAP test plan example ... 273

Figure 153: TAP plugin step (I) .. 274

Figure 154: TAP plugin step (II) ... 275

Figure 155: TAP plugin step (III) .. 275

Figure 156: TAP plugin step (IV) ... 276

Figure 157: TAP plugin step (V) .. 277

Figure 158: TAP plugin step (VI) ... 277

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU

List of Tables
Table 1 List of TRIANGLE features ... 7

Table 2 TRIANGLE Release 1 features ... 9

Table 3 TRIANGLE Release 2 features ... 10

Table 4 TRIANGLE Release 3 features ... 10

Table 5 TRIANGLE Release 4 features ... 11

Table 6 Software deployment in the testbed .. 14

Table 7 TAP plugins implemented ... 40

Table 8 Command reference for mobile extensions to the WebDriver 44

Table 9 Commands provided by the Quamotion Webdriver script editor 50

Table 10 Orcomposutor REST API .. 54

Table 11 TestelDroid configuration and control API ... 61

Table 12 One-way Delay KPIs .. 65

Table 13 One-way Delay Variation KPIs .. 66

Table 14 One-way Packet Loss Rate KPIs .. 67

Table 15 One-way Packet Loss Distribution KPIs .. 68

Table 16 YouTubeTM KPIs ... 69

Table 17 SpotifyTM KPIs ... 71

Table 18 FacebookTM KPIs .. 72

Table 19 Web Browsing KPIs .. 73

Table 20 File Transfer KPIs ... 74

Table 21 WLAN AP commands available in TRIANGLE .. 74

Table 22 WLAN Access Point automation and LWIP scenarios .. 76

Table 23 DEKRA Tool RC Server channel .. 78

Table 24 DEKRA Tool TAP Instrument .. 78

Table 25 DEKRA Tool TAP DUT ... 79

Table 26 DEKRA Tool TAP Test Steps ... 80

Table 27 DEKRA Tool RC Server Get Results .. 81

Table 28 N6705 DC power analyzer data logging specifications ... 84

Table 29 Measurement parsing TAP plugin instruments ... 88

Table 30 Measurement parsing TAP plugin test steps ... 88

Table 31 OML TAP plugin instruments .. 92

Table 32 OML TAP plugin test steps ... 92

Table 33 OML TAP plugin result listeners ... 93

Table 34: Validation test result RFP/HS/001.. 110

Table 35 MME configuration parameters ... 113

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU

Table 36 PGW configuration parameter .. 114

Table 37 PCRF configuration parameters ... 114

Table 38 SGW configuration parameters ... 115

Table 39 HSS configuration parameters .. 115

Table 40 ePDG configuration parameters ... 115

Table 41 ANDSF configuration parameters ... 116

Table 42 HSS Statistics ... 116

Table 43 MME Statistics .. 117

Table 44 PCRF Statistics .. 117

Table 45 PGW Statistics.. 117

Table 46 SGW Statistics.. 118

Table 47 EPC Elements loopback IPs and not depicted interfaces 119

Table 48 Current status of devices integrated into the testbed .. 135

Table 49 DUT HUB SCPI command reference .. 135

Table 50 admin-openrc5.sh ... 147

Table 51 LXD containers after OSM installation .. 150

Table 52 OSM Client installation, configuration and verification .. 151

Table 53 OSM Client modifications ... 151

Table 54 Using OSM client with GUI generated descriptor may cause an error 152

Table 55 Messages from MPEG-SAND protocol ... 160

Table 56 VR Application User Experience Key Performance Indicators 172

Table 57 Robotic arm position range and reference .. 175

Table 58 Robotic arm reference values ... 176

Table 59 Validation results for determining matching threshold ... 180

Table 60 AUE/VR/001 Validation results ... 181

Table 61 App user flow generation - Experiments ... 187

Table 62 Model extraction - Configuration ... 194

Table 63 Model extraction - Results .. 195

Table 64 Identity Service API Request Token ... 224

Table 65 Identity API Service Authentication Token Response ... 224

Table 66 Sample client VNFD ... 231

Table 67 Performance Tool QoS Measurement Capabilities ... 234

Table 68 Performance Tool QoE Measurement Capabilities ... 234

Table 69 Performance Tool RF and System Measurements ... 234

Table 70 Performance Tool Built-In Traffic Generator ... 235

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU

List of Abbreviations

AUT App Under Test

AP Access Point

APNet Antennas, Propagation and Radio
Networking

BER Bit Error Rate

BLER Block Error Rate

BS Base Station

CAPEX CApital EXpenditure

CDMA Code Division Multiple Access

CFO Carrier Frequency Offset

CO Confidential

CP Cyclic Prefix

CR Cognitive Radio

CRS Cognitive Radio Systems

CSI Channel State Information

CSMA Carrier Sense Multiple Access

C2X Car-to-Anything

D Deliverables

DL Downlink

D2D Device-to-Device

DMRS Demodulation reference signal

DRX Discontinuous Reception

DTX Discontinuous Transmission

DUT Device Under Test

EIRP Effective Isotropic Radiated
Power

EIT European Institute for Innovation
and Technology

E2E End-to-End

EVM Error Vector Magnitude

FDD Frequency Division Duplex

FD-MIMO Full-Dimension MIMO

FEC Forward Error Correction

FR Frequency Response

GPRS General Packet Radio Service

GSM Global System for Mobile
communications

HARQ Hybrid Automatic Repeat Request

ICI Inter-Carrier Interference

ICT Information and Communications
Technology

IEEE Institute of Electrical and
Electronics Engineers

IMT International Mobile
Communications

IP Intellectual Property

IPR Intellectual Property Rights

IR Internal report

ITU International Telecommunication
Union

ITU-R International Telecommunication
Union-Radio

KPI Key Performance Indicator

LAN Local Area Network

LOS Line of Sight

LTE Long Term Evolution

LTE-A Long Term Evolution-Advanced

L2S Link to System

M Milestones

Mbps megabits per second

Mo Month

MA Multiple Access

MAC Medium-access Control

MGT Management

MIMO Multiple-Input Multiple-Output

MMC Massive Machine Communication

M2M Machine to Machine

MSE Mean Squared Error

NLOS Non line of Sight

OFDM Orthogonal Frequency Division
Multiplexing

OPEX Operational Expenditure

PA Power Amplifier

PAPR Peak-to-Average-Power-Ratio

PC Project Coordinator

PHY Physical Layer

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU

PU Public

QAM Quadrature Amplitude Modulation

QAP Quality Assurance Plan

QMR Quarterly Management reports

QoE quality of experience

QoS Quality of Service

RACH Random Access Channel

RAN Radio Access Network

RAT Radio Access Technology

RF Radio Frequency

R&D Research and Development

RRM Radio Resource Management

RTD Research and Technological
Development

RTT Round Trip Time

SDR Software Defined Radio

SINR Signal to Interference and Noise
Ratio

SRS Sounding Reference Signal

T Task

TDD Time Division Duplex

TDMA Time Division Multiple Access

TRX Transmitter

TTI Transmission Time Interval

UE User Equipment

UL Uplink

UMTS Universal Mobile
Telecommunications System

USRP Universal Software Radio
Peripheral

V2V Vehicle-to-Vehicle

V2X Vehicle-to-anything

WCDMA Wide Code Division Multiple
Access

WLAN Wireless Local Area Network

WP Work Package

WPAN Wireless Personal Area Networks

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 1/277

1 Introduction

1.1 Why TRIANGLE
According to Cisco [1], global mobile data will increase from 12 Petabytes per month in 2017 to
77 Petabytes per month in 2022. It is interesting to highlight that fourth-generation (4G) traffic
exceeded third-generation (3G) traffic for the first time in 2015The fast pace of the
standardization process adds more complexity to this picture. In current network deployments,
while evolving towards 5G, 4G LTE coexists with 2G and 3G technologies. In conjunction with
the set of new features added in each 3GPP release, the potential combinations of network
configurations grow exponentially for operators.

Despite that fact, mobile subscribers are increasingly focused on applications and keep
demanding high levels of quality everywhere. Unfortunately, it is usual to find performance and
connectivity problems that hugely affect the user experience.

In this context, the primary objective of the TRIANGLE project is to promote the testing and
benchmarking of mobile applications and devices in Europe as the industry moves towards 5G.
It also provides a pathway towards certification of qualified mobile developments in Europe.

1.2 The TRIANGLE Testbed and its Users
Figure 1 provides an overview of the TRIANGLE testbed with emphasis on the testing workflow.

Figure 1 Overview of the TRIANGLE testing workflow

The point of entry to the testbed are the interfaces offered to the end users. For device makers
and researchers the interface is based on TAP (see section 4) and a set of reference templates.
For app developers the interfaces is the Portal (described in Section 4). These interfaces have
been designed to adapt to the user’s needs. At the same time, the complexity of the testing is
wrapped into high-level scenarios, which prevent users from having to deal with the full set of

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 2/277

configurable parameters. These high-level scenarios are based on 5G testing scenarios
identified in Section 3 of Deliverable 2.1.

Based on this selection, the testbed configures the physical components and schedules the
execution of the tests and the collection of measurements required to check the performance of
the features of the application or device under test. The interaction with the apps under test is
also automated, i.e., it automatically carries out the user interactions to be analysed.

As output, the testbed provides detailed reports to the user. These reports are generated based
on the information collected by the reporting and automation tools running on both the testbed
and the device.

The testbed support four types of test campaigns:

 Certification campaigns. A certification campaign executes all the test cases
applicable to a device under test or an app under test. After filling a questionnaire, the
test cases are automatically selected and no additional configuration is needed.

 Standard campaigns. When users opt for standard campaigns, they can select among
the test cases defined for the uses cases and features supported by the app. The user
can also configure the scenario and the device (for app testing) used during the test
campaign. Remote screen and traffic capture are available during the execution of these
campaigns.

 Custom. Users can define their own test campaigns providing a power shell script which
replays the feature under test and can select the scenario and the device. Remote
screen and traffic capture are available during the execution of these test campaigns.

 Model-Based Testing. The app user flows are generated automatically based on a
formal description of the application under test. The method applied for the generation
is described in Section 11.3.

1.3 Testbed High-Level Architecture
Figure 2 shows a more detailed view of the main functional blocks that make up the TRIANGLE
testbed architecture. The architecture can be divided into several subsystems, whose role will
be introduced briefly in the rest of this section. The figure also includes a note with the section
in which each component is described in more detail.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 3/277

Figure 2 High-Level architecture of the testbed

1.3.1 Interface and Visualization (Portal)
The TRIANGLE portal is a user-friendly interface for remote interaction with the testbed. It
provides a view of the testbed that is adequate for each user profile, hiding unnecessary
complexity. The main purpose of the testbed portal is to prepare and run tests, and later review
the results.

Tests are configured based on the selections performed by the users, e.g. which app to test, on
which device, and on which high-level scenario the user wants to run the tests. These user
inputs are processed and transformed into inputs for the different components of the underlying
architecture.

A high-level scenario is an understandable term of the network conditions which are configured
during the test case to reproduce conditions experimented in the high-level scenario selected.
In other words, a high-level scenario is an abstraction of similar network configurations, e.g.
“Vehicular” is a high-level scenario which compromises different configurations of the speed: 30
km/h, 60 km/h, 90 km/h and 120 km/h.

The portal stores all the campaigns and other user provided data, as well as the results obtained
from the tests, so that test case results are traceable to their configuration, and can be repeated
if needed.

The Portal is described in Section 3.

1.3.2 Orchestration
To run a test case, all components must be controlled by an orchestrator, which must coordinate
their configuration and execution. In the TRIANGLE testbed, the Test Automation Platform
(TAP), from Keysight, serves as coordinator responsible for configuring and running the tests.
Each testbed component is controlled through a TAP driver, which serves as bridge between

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 4/277

the TAP engine and the actual component interface. These drivers have been developed for
the testbed.

The configuration of the different elements of the testbed network depends on the high-level
scenarios selected by the users. The testbed translates these high-level scenarios into the
specific configurations that TAP applies to each network component. In short, TAP controls the
overall execution of each test case.

An integral part of testing apps is automating their execution, i.e. simulating the interactions of
a user with the app. Quamotion automation tools provide the means to create sequences of
user actions, and then replaying them on a testbed device.

To synchronize radio access and power consumption measurements, the orchestration
components include a PTP based synchronization system.

These orchestration components are described in Section 4.

1.3.3 Measurement and data collection
A measurement is a value discovered by measuring, that corresponds to a property of
something. To obtain measurements to compute the TRIANGLE Mark and other reports, the
testbed provides several probes (both software and hardware) which extract the required
measurements. Software probes running on the UE include DEKRA Agents and the TestelDroid
tool from UMA. TRIANGLE also provides an instrumentation library for app developers, in order
to provide additional measurements that cannot be extracted by other means. Hardware probes
include a power analyzer connected to the UE to measure power consumption.

Measurements are collected and analyzed in order to calculate the key performance indicators
(KPIs) associated to the features provided by the apps or devices, e.g. video streaming or VoIP
calls. To facilitate the aggregation of measurements and KPIs, all measurement values are
stored in a central OML server, which uses a PostgreSQL database server as backend.

All these measurement components are described in detail in Section 5.

1.3.4 RAN (Radio Access Network)
Radio access emulation plays a key role in the TRIANGLE testbed. RAN is provided by a UXM
Wireless Test Set from Keysight, a mobile network emulator that provides state of the art test
features. Some of its key features for testing include flexible Inter Cell Interference Coordination
(eICIC) schemes, WLAN offloading, IMS/End to End VoLTE communications between multiple
devices, and battery drain performance with flexible network and sleep mode settings.

Only two UEs can be connected at the same time to the UXM. To connect more devices, e.g.
all the reference devices used in the testbed, RF switches are used.

The RAN emulator is described in section 6.

1.3.5 EPC (Evolved Packet Core)
To provide an end-to-end system, a commercial EPC from Polaris Networks, which includes the
main elements of a standard core network: MME, SGW, PGW, HSS, and PCRF has been
integrated. In addition, this EPC includes the EPDG and ANDSF components for dual
connectivity scenarios. As an extension for this project, the S1 interface to interconnect the UXM
with the EPC has been developed.

The EPC system is described in Section 7.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 5/277

1.3.6 Transport
To emulate the transport network between the eNodeB and the EPC, TRIANGLE uses an SDN
deployment that provides features such as traffic prioritization, separation of data and control
plane traffic, and transparent mirroring of selected traffic flows. Moreover, the testbed offers the
possibility of integrating artificial impairments in the interfaces of the core network and the
application servers.

Finally, the testbed includes an over-the-top-content enabler, the VPS Engine, which can be
used by third-party applications to configure certain aspects of the SDN deployment and the
EPC policies to request a specific Quality of Service (QoS).

The transport network components are described in Section 8.

1.3.7 App(s)
The TRIANGLE testbed can run apps from app developers in a set of reference devices.
Support for running and automating apps is explained in Section 4, as part of the orchestration
of the testbed.

1.3.8 UE (User Equipment and Accessories)
As with apps, the testbed allows testing the apps provided by users in (i) reference devices and
(ii) new devices that will be tested under the conditions set by the testbed. In both cases, devices
must be physically connected to the testbed. To fully control the radio conditions configured at
the UXM Wireless Test Set, the RF connection must be conducted through cables. Also, to
properly analyze power consumption, the device must be powered directly by the N6705B
power analyzer.

In addition, the device should provide some control and automation interface that can be used
from the testbed orchestration tools. For instance, in the case of Android, this means a USB
connection to a testbed computer to support connection through the adb tool.

The integration of a set of reference Android devices is described in Section 9.

1.3.9 Local application servers
The testbed includes a virtualized infrastructure (see Section 10) to suppor the local deployment
of services. Allocating these servers in the testbed ensures that measurements are not altered
by the Internet connection between the testbed and the remote server, which cannot be
controlled by the testbed.

1.4 Testbed workflow
Figure 3 provides the overall logic flow of the testbed from top to down.

The workflow of the testbed starts with the user defining, through the Web portal, the app/device
under test, the features and the user behaviours, and the desired test procedure: certification
or custom test. For custom tests, the user will also have to specify the high-level scenarios in
which he or she is interested. In this context, user behaviours are sets of actions that represent
a particular usage scenario of the application. For instance, login into a particular application,
which will require pressing a button, entering a text in the username field, entering a text in the
password field, and clicking the “Ok” button.

The testbed will transform these inputs into:

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 6/277

 Specific configurations of the network elements. For each configurable component, the
testbed will select among a predefined pool of configuration files the ones that match
the input given by the user. The resulting test plan to be executed will use the contents
of these files to configure each component.

 User behaviours will be translated into a specific user flow control, which will be included
in the test plan to automate the behaviour of the application during the test.

 KPIs associated with the features declared by the user. The test plan will take into
account these KPIs to define the measurements that have to be collected during the
test.

The orchestrator will conduct the execution of the test and the collection of the measurements,
which will be stored in a common database for each test. The results will be analyzed and post-
processed to calculate the KPIs, generate the test reports and (when applicable) deliver the
TRIANGLE mark.

Figure 3 TRIANGLE testbed high-level workflow

1.5 TRIANGLE testbed releases

The TRIANGLE testbed has been continuously developed along the project. To control the
testbed versions four releases (R1 to R4) have been produced. The following table summarizes
the main features of the TRIANGLE testbed and the releases in which they were included, for
a better understanding of its evolution.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 7/277

Table 1 List of TRIANGLE features

Testbed
features

 Components Rel Comments

Testbed
accessibility

Portal R2 Main entry point to the testbed

 Web Reporting Tool R2 Raw measurements visualizer

Test Automation Platform

(TAP)
R2 Testbed access for advanced users

Booking System R3 The booking system consists in a web

calendar service used by the experimenters to
book the TRIANGLE Portal Testbed.

 Scheduler
R4 Testing campaings are scheduled until the

testbed is available. it is possible to queue
several campaign executions at a time.

PDF reporting R4 This report provides a summary of the results

obtained in all the test cases executed in each
one of the domains.

Testbed usage

Standard campaigns R2 When users opt for standard campaigns, they
can select among the test cases defined for
the uses cases and features supported by
app. The user can also configure the scenario
and the device used during the campaign

Custom campaigns R2 Users can define their own test campaign
providing a power shell script which replays
the feature under test and can select the
scenario and the device.

Researcher campaigns R2 allows modification of the test templates and

configuration of low level parameters

Certification campaigns R3 A certification campaign executes all the test
cases applicable to the app based on the uses
cases and the features supported by the app.
The uses cases and the features are
configured when the application is uploaded to
the Portal. No additional configuration is
needed.

Model-based campaign R4 Automatic generation of app user flows based

on a formal model of the app under test

Results
Raw results R2 Battery, cpu, memory, traffic, power

consumption, logs, radio measurements, …

KPIs R3 Raw results are post-processed to compute

the KPIs defined in D2.5

MOS R3 Each KPI is transformed into a syntethic

MOS (See section 2.7.1)

TRIANGLE mark (3 domains) R3 The synthetic MOS is the aggregation of 3
domains: App Energy Consumption, Device
Usage resources, App User Experience. After
executing the tests a synthetic MOS per

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 8/277

domain is obtained. The final TRIANGLE mark
is obtained aggregating synthetic MOS scores
for all the domains.

TRIANGLE mark (6 domains) R4 New domains: Reliability, Network

Resources Usage, Network adaptation

 Additional results R4 Videos, enhanced logs

Device automation
Quamotion Webdriver R1 The Quamotion Automation Tools integrated

as interface to interact with the apps and the
devices under test.

Powershell support R3 App users flows are defined via powershell

scripts

Monitoring tools
TestelDroid R1 Android applications which enables traffic

capture at the UE

DEKRA Performance Tool R1 Multiplatform performance monitoring tool:
device resources (RAM, CPU, GPU), traffic

generation, traffic statistics, reference
applications

Instrumentation library R2 Defines a set of measurements points to
correlate the measurements collected with
the actions performed by the applications

under test

WLAN Access Point

Automation
R4 A module to facilitate the integration and

control of Wi-Fi access points in the
TRIANGLE testbed.

Measurements
post-processing
and storage

ETL Framework R3 MOS scoring per domain, aggregated MOS

KPIs computation R2 KPIs specified in D2.2 are computed after

the execution of each test case and stored in
the general database

 General database R2 Main data base of the project

Backhaul Emulated Impairments R3 Core interfaces and servers connections

 SDN R3 Servers connectivity

 VNF R3 Servers deployment

 Openstack R3 Servers deployment

 EPC (Polaris) R2 Commercial EPC

Instruments UXM R1 LTE-A Pro base station emulator

 N6705B Power Analyzer R1 Power Analyzer

Devices
Android devices R1 Full automation: apps user flows, cpu,

battery, ram, traffic, adb control, logcat
access, power consumption, gps signals

NB-IoT devices R2 Ad-hoc automation depending of the

capabilities exposed by the device

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 9/277

iOS devices R3 Partial automation: App user flow, internal

log, traffic capture

Additional features

S1 Interface R1 With this functionality the eNB Emulator is
capable of connecting to commercial core

networks

S1 handover R2 Vehicular scenarios also require handovers.

Robotic arm R2 The robotic arm platform meets the technical
requirements derived from the Virtual Reality,
Gaming and Augmented Reality test
specification, mostly on the ability to move the
device.

GPS emulation R2 Software defined radio solution for the

generation of GPS signals

Model based testing R2 Model-based testing is a testing technique

that uses a model of the app under test to
automatically generate the app user flows.

Remote pcap R2 Enables the capture of traffic in any of the

interfaces.

 Heterogeneous access R3 LWIP support

 Remote screen R3 VNC access to the app and device under test

Measurements compesation R4 Baseline calculation per domain for obtaining

more accurate KPIs

Error-handling R4 Additional checks for ensuring the correct
execution of the App Userflows during a test,
Campaign Execution Retries, Loose
Processes Handling

Management console R4 The Administration Console communicates
with the Portal and the queue manager using
their REST APIs, and is able to modify the
contents of the execution queue, while
displaying useful information about current or
past executions and campaigns

The tables below list the featutes developed in TRIANGLE testbed in its different releases.

Table 2 TRIANGLE Release 1 features

Release Testbed features Components

R1

Device automation Quamotion Webdriver

Monitoring tools
TestelDroid

DEKRA Performance Tool

Instruments
UXM

N6705B Power Analyzer

Devices Android devices

Additional features S1 Interface

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 10/277

Table 3 TRIANGLE Release 2 features

Release Testbed features Components

R2

Testbed accessibility

Portal

Web Reporting Tool

Test Automation Platform (TAP)

Testbed usage

Standard campaigns

Custom campaigns

Researcher campaigns

Results Raw results

Monitoring tools Instrumentation library

Measurements post-
processing and storage

KPIs computation

General database

Backhaul EPC (Polaris)

Devices NB-IoT devices

Additional features

S1 handover

Robotic arm

GPS emulation

Model based testing

Remote pcap

Table 4 TRIANGLE Release 3 features

Release Testbed features Components

R3

Testbed accessibility Booking System

Testbed usage Certification campaigns

Results

KPIs

MOS

TRIANGLE mark (3 domains)

Device automation Powershell support

Measurements post-
processing and storage

ETL Framework

Backhaul

Emulated Impairments

SDN

VNF

Openstack

Devices iOS devices

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 11/277

Additional features
Heterogeneous access

Remote screen

Table 5 TRIANGLE Release 4 features

Release Testbed features Components

R4

Testbed accessibility Scheduler

Testbed usage PDF reporting

Results
TRIANGLE mark (6 domains)

Additional results

Monitoring tools WLAN Access Point Automation

Streamowl
Video quality-of-experience

assessment extension

MEC extension MEC server and S1 breakout

Additional features

Measurements compesation

Error-handling

Management console

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 12/277

2 TRIANGLE Testbed Architecture
The TRIANGLE testbed is composed of several interconnected hardware units, computers and
virtual machines. All these components work together to provide the means to execute tests
over apps or devices, and to provide test reports. On top of the infrastructure layer the project
has developed a management frawework which fully automates the configuration, control and
execution of the test cases specified in D2.5.

2.1 Testbed Infrastructure
Figure 4 shows an overview of the physical interconnections between the testbed components.

Figure 4 Testbed physical infrastructure

UEs (either reference devices for app testing, or a UE under test, when testing devices) are
connected to the UXM mobile network emulator. The radio signal is not radiated (over-the-air);
instead it is conducted through calibrated RF cables to the UE antenna connector. For testing
purposes most UEs typically contain small antenna connectors which are hidden from the user.
The UXM only support the interconnection of two UEs. To connect more devices to the same
UXM, the testbed uses RF switches, controlled by a switch driver. The switches are placed in
the RF connection between the UEs and the UXM, and the switch driver will select which RF
connections (RF paths) to be routed to the UXM.

The UXM emulates all the network signalling and physical signals, as well the MIMO radio
channel. All the protocol layers in the emulated network operate realistically as defined in the
3GPP test specifications and can be configured. Moreover, for testing purposes, the UXM
instrument provides additional useful capabilities, such as a downlink channel emulator, detailed
logging and friendly control.

The battery pins of a UE are connected to the DC power analyzer N6705B. This allows both the
control of the input voltage into the phone and to measure the instantaneous current drawn by
the device. The N6705B power analyzer supports up to four devices connected at the same
time.

The UE is connected via USB cable to the server running the testbed automation software. More
specifically, the UE USB data cables are connected to a DUT HUB, which in turn is connected
to the server by a single USB cable.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 13/277

Finally, the following elements are connected via Ethernet in a local network: UXM, N6705B,
switch driver, orchestration server, EPC, transport, and additional services (see Figure 4 for
more details).

2.2 Software Architecture
Figure 5 shows the software interfaces between the testbed management layer, the
infrastructure components, and with the testbed Portal.

Figure 5 Testbed software architecture

In the testbed management layer lies the Test Automation Platform (TAP), the controller of the
testbed components. TAP controls all the components of the testbed through appropriate TAP
drivers provided by TAP plugins. The TAP core also comes with a set of standard plugins (see
Section 4.1).

Many components offer a SCPI interface to receive commands. TAP provides support for writing
drivers for SCPI-based components, which facilitates the work of adding more components.
This is the case of the drivers for the UXM and Power Analyzer apps running on their

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 14/277

corresponding hardware units. In both cases, the SCPI commands are delivered through a TCP
connection.

For Android apps, the ADB command-line tool is a fundamental component. ADB can be used
to send commands to apps running on the UEs, or automate certain actions such as switching
airplane mode ON and OFF to force the attachment of the UE to the base station. Some of the
UE automation tools that are part of the testbed, such as Quamotion WebDriver, use ADB to
perform their function.

The Quamotion WebDriver provides a REST API to manage the apps on the Android device,
and perform user actions, such as tapping or swiping. These commands are delivered to the
Android UE using ADB. TestelDroid is also managed through ADB.

The EPC can be controlled through a fixed set of TCL scripts that use a TCL scripting API
provided by the EPC components emulators. The TAP driver will execute these scripts, which
then will send the appropriate commands to the ECP through the TCL API.

The measurements from all the tools are collected and sent to a central OML server, which uses
a custom OML protocol. While some tools may send measurements directly to the OML server,
the TAP orchestrator will use a driver that will allow sending measurements to the OML server
from TAP, in two ways. First, for tools that generate results in CSV files, the driver will collect
these files and send them as measurements to the OML server. Second, the driver will
implement the standard TAP mechanism for handling results from drivers, so that drivers which
are already well integrated with TAP can publish them to the OML server without additional
work.

2.3 Software Deployment
Regarding the deployment, software is split between Windows and Linux machines (as required
by each tool), and virtualized when possible. The current deployment uses a single Windows
machine and several Linux virtual machines (VMs). Table 6 provides an overview of the installed
software components in the testbed.

The Windows computer runs the TAP software, the ADB server that can talk directly to the
(Android OS) UE and the DEKRA controller which manages the DEKRA agents installed in the
UE. Other tools that use ADB to relay commands to the UE, such as the Quamotion WebDriver,
need to be installed in the same computer, or be configured to use ADB remotely.

Table 6 Software deployment in the testbed

Software component OS Notes

Test Automation Platform Windows Main computer

DEKRA performance tool
controller

Windows Main computer

DEKRA agent Android / iOS UE

TestelDroid Android UE

Quamotion WebDriver Windows/Linux
Helper instance in Linux as part
of Portal

Testbed Portal Linux VM, automated recreation

OML / PostgreSQL Linux VM, automated recreation

Local application servers Linux VM, automated recreation

ADB server Windows Main computer

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 15/277

EPC Linux Multiple VMs

Linux VMs have been defined using Vagrant [2], which allows recreating them from scratch and
updating their contents easily. Vagrant uses a mixed declarative and imperative approach to
describe the contents of a VM, including the actions that must be performed to set up any
required software that will run on the VM. The OML and the local servers are installed in these
VMs. The EPC is distributed across a set of Linux VMs.

The Portal is deployed in a separate Linux VM. This machine hosts the web server that runs the
Portal, as well as the database that is used as backend.

2.4 Testbed Management Workflow
End users, of the type Application developers, use the TRIANGLE portal to upload their apps
and then define the test campaigns. The Portal provides a set of forms or templates where the
users declare the features of their Apps (implementation statements), and any required
additional information (such as the app user flow which contains a sequence of actions to
stimulate the app during the test) to carry out the tests. The Portal is described in more detail in
Section 3. The overall workflow is illustrated in Figure 6 and is described below.

First, to configure and execute a test, the orchestrator (implemented in Python as shown in
Figure 7) uses the information provided by the end user in the Portal. The information is retrieved
by the Orchestrator using the REST API provided by the Portal as described in Annex 2.

With this information the Orchestrator instantiates the Compositor to compose a TAP test plan
that includes the network scenario setup, the app installer, the app user flow and the
measurements required to compute a given set of KPIs. The KPIs to compute depend on the
App features declared by applicant or testbed user. The TAP test plan is built from existing TAP
templates and TAP scenarios as shown in Figure 7.

Figure 6 Testbed managment workflow

In the next step of the testbed workflow, the Executor is instantiated to execute the TAP test
plan. The TAP test plan configures all equipment needed to run the tests (such as the UXM or
the N6705B), executes the body of the test, and gathers results produced by any of the
measurement probes and tools. The results are stored in a database.

Then, the Orchestrator instantiates the ETL module (Extract, Transform and Load) to compute
the KPIs from these measurements. The computed results are stored in a separate database.
For certification, a set of metrics are derived out of the computed KPIs. To rate the product using

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 16/277

the TRIANGLE mark, the metrics are compared against a set of reference values. These metrics
are stored in a separate database.

The final step is to present the results to the end user in the Portal.

The workflow described above requires the components show in Figure 7. For the sake of
clarity,Figure 7 only shows control and management entities. Out of all these components, the
key one is the so-called Orcomposutor, which is the combination of the Orchestrator, the
Compositor and the Executor. The Orcomposutor also provides a REST API which is used by
the Portal to order the execution of a test campaign defined by the user in the Portal. The
Orcomposutor is described in more detail in Section 4.

Figure 7 Control and management entities of the testbed

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 17/277

3 Interface and Visualization (Portal)

The TRIANGLE Portal is the main entry point to the TRIANGLE testbed for app developers. In this
Portal, among other things, end users can upload new apps. In addition, end users will have to
declare the uses cases and their apps (see Figure 8). Each use case has a set of features
associated, as shown in Figure 11. These features will define what can be tested through
experiments, or which tests specifications will be applicable when they opt for.

Figure 8 Uses cases

Users can also define their own experimentation campaigns to test certain features of their app.
For these campaigns, users have some high-level options they can configure: the scenario of the
test, the device on which the test will be carried out, and a subset of the applicable KPIs. The
Portal also provides a code snippet that should be used by the developer inside its app to measure
the KPIs associated to the features declared.

3.1 Organization
The main sections of the Portal (for an app developer user) are:

 Login: a standard login page, integrated with LDAP.

 Dashboard: the main page that users see when they log in into the Portal. It contains a
summary of the activity of the user, e.g. apps uploaded, or tests performed.

 Apps: app developers can manage their apps in this section. They can upload new app
files, which will be recognized and categorized automatically. For each app, they can see
the test campaigns (i.e., the group of test cases selected by the user) in which it has been
used.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 18/277

 Booking: Testbed booking is managed by the users directly.

 Test Campaigns: Users create test campaigns to test their apps in a particular device and
scenario. A test campaign is a set of test cases selected by the user to be executed from
one or several test specifications.

 One specific test campaign: It is the certification test campaign. The certification test
campaign is the set of test cases required (i.e., applicable based on the features
supported) to obtain the TRIANGLE mark. The set of test cases in the certification test
campaign is automatically generated based on the app characteristics/features.

 Help: information about the usage of the Portal.

Figure 9 Overview of Portal organization for app developers

3.2 Data
The Portal must store data to support the features outlined above. The main purpose of the Portal
is to prepare and run tests. The main entities managed by the Portal and their relationship are
shown in Figure 10. They are described in the remainder of this section. The names of the entities
managed by the portal are written in uppercase, to highlight them.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 19/277

Figure 10 Main entities for app developers in the TRIANGLE Portal

App developers upload apps to the Portal, to run tests on the reference devices provided by the
testbed. The app developer must select the features implemented by the app, from a predefined
list of features (implementation statement). Once the app has been uploaded, the developer can
run test cases. The developer can later upload several app versions (e.g. APK files for Android) of
the same app, and compare the results obtained in different test cases. Different apps from the
same app developer will be isolated, i.e., the user will not be able to compare results from test
across different Apps.

Apps will be tested according to the test cases selected in the test campaign. The test cases that
build the test campaign are automatically selected based on the features of the app, previously
selected by the app developer. The developer can modify the list of test cases in the test campaign
or can change the test cases which are provided in the TRIANGLE testbed to run its own test
cases. The test case automation controls instruments, devices, etc., captures measurements and
compute KPIs. The measurements and the KPIs are made available to the users of the TRIANGLE
testbed. Furthermore, measurements and KPIs are used also to compute certain metrics. A metric
is a categorization of the KPIs from a user satisfaction perspective. The metrics are used to provide
the assessment before the TRIANGLE mark can be granted.

To run test cases with different app versions, app developers will create different test campaigns.
For each test campaign, the app developer can select the device on which to run the test cases,
the high-level scenario from a fixed set and, optionally, a subset of the applicable KPIs. A single
high-level scenario abstracts several concrete test configurations (e.g., “Urban” includes
“Pedestrian” and “Driving”), with the actual network configuration that will be applied.

Each test campaign includes a list of test cases. A test case is a sequence of actions required to
achieve a specific test purpose. Each time the same test campaign is executed, all its test cases
are executed. Each one will produce a new set of results (test case run, i.e. the results and
metadata of the execution).

3.3 Implementation
The Portal has been implemented using the Ruby on Rails framework c. For the backend, the
Portal uses a PostgreSQL database (different from the ones used by the OML server or TAP). For
the frontend, the Portal uses the Bootstrap framework [3]. The Portal follows the organization

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 20/277

outlined above. The data stored in the backend is structured as described in the previous
subsection. The Portal follows the organization outlined above. The data stored in the backend is
structured as described in the previous subsection. The database tables are listed in Annex 1.

3.4 Information Provided by Users
App developers provide information about their apps through the Portal. In addition, when creating
an experimentation campaign, or going for certification, they may be asked for additional
information.

Since the information provided for apps is of considerable size, users will be able to enter it at their
own pace, using the forms available in the Portal.

Figure 11 Features selection and measurements points

3.4.1 App info

The following shall be provided for each app:

 App file, e.g. APK file for Android apps. Some metadata can be extracted from this file,
such as the app name, version, and codename.

 Features applicable to the app. The app developer will select from a list of uses cases
and its associated features, which ones apply to his or her app. The list of features were
extracted from D2.2, so that a clear mapping between them and the test specifications/ICS
table can be done.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 21/277

 How to measure. Each feature will be tested according to a set of KPIs. In order to test
many of the features, and to get the appropriate measurements to compute the KPIs, app
developers will have to provide additional information.

o App user flows. A sequence of user actions that can be executed automatically to
test that feature. When possible, the app user flows will be asked once per feature,
so that users do not have to enter separately for each KPI, or in groups. For
instance, if there is a “post photo” feature on which several KPIs can be measured,
they will only be asked for a single app user flow.

o Measurement points. In order to compute some KPIs, the app developer must
define how some of the required measurements can be obtained in his or her app.
Depending on the KPI, the user will be able to provide these measurement points
in several ways. For instance, as a particular user action within the app user flow,
or a measurement point set using an instrumentation library.

Since apps may evolve over time, and their features, or how to measure some of the KPIs, can
change over time, the developer will be able to customize this information for each app version.

3.4.2 App experimentation
When the user wants to carry out an experimentation campaign, he or she must select the following
information:

 App and version. The user may have more than one app, and more than one version of
that app. Therefore, he or she must select the one that will be tested.

 Scenario. One of the high-level scenarios defined in the TRIANGLE project, which hides
the complexity of the parameters that must be configured in the Testbed equipment.

 Device. One of the devices available in the Testbed, on which the app will be tested.
 Features/KPIs (optional). A subset of all the features/KPIs applicable to the app, if the

developer is interested only in testing part of the app.

3.4.3 Powershell Scripts as App User Flow
This feature allows PowerShell files (.ps1) recorded with Quamotion tool to be uploaded as App
User Flows.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 22/277

Figure 12 Allow uploading PowerShell files (.ps1)

Figure 13 Display powershell script content

Powershell scripts are used for specifying the actions in the App Userflows. Quamotion's
Powershell library provides commands for executing the actions on the app under test (such as
Click-Element or Enter-Text) while Powershell provides statements for controlling the execution
flow. It is also possible to include standard cmdlets, for example, Write-Output to save information
on a log file or Start-Sleep to introduce delays on the execution.

The following is an example of an userflow that checks if a custom keyboard is available and, if
so, enters 'Hello' 10 times using a combination of standard Powershell and Quamotion commands:

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 23/277

$messageBox = Find-Element -xpath "//android.widget.EditText[@resource-
id='com.test.app:id/send_text']"

if ([string]::IsNullOrEmpty($messageBox)) {

 throw "Could not find keyboard."

} else {7

 for ($i=1; $i -le 10; $i++) {

 Click-Element -elementId $messageBox

Set-Value -elementId $messageBox -value "Hello"

 Click-Element -xpath "//*[@resource-id='com.test.app:id/btn_send']"

 Start-Sleep -Seconds 1

 }

}

3.5 Backend REST API
The Portal includes a REST API that provides access to its backend. This API allows external
services to request information stored in the backend database or update it. Outside of the Portal,
the primary user of this REST API is Orcomposutor (described in Section 4.5), which uses the API
to fetch the details of campaigns to be executed, and to upload the results once they are finished.

All API calls return a JSON object with data about the requested resource. The REST API largely
adheres to the HATEOAS (Hypermedia as the Engine of Application State) principle. In practice,
this means that JSON responses include URLs that point to other related resources. For instance,
when querying a single application, the JSON response includes a list of its versions with some
information such as their Id and version code, as well as a URL to the resource of that application
version, in order to request more details.

The REST API provides access to the following resources:

- Devices

- Users

- Apps and their versions

- Features

- Test cases

- Scenarios

- Campaigns

Methods available to access to these resources are detailed in Annex 2.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 24/277

3.6 Test Cases Supported
The Portal offers full support for the test cases defined in D2.2 for the App User Experience (AUE)
domain, the Device Resources Usage (RES) domain, the App Energy Consumption (AEC)
domain, the Network Resources Usage (NWR) and the App Reliability (REL).

Figure 14 The Portal identifies the available test cases and presents a description for each one

As shown in Figure 15, the Portal also provides a list of the measurements points that must be
included in the source code of the application under test to obtain the measurements specified in
the test cases.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 25/277

Figure 15 Measurement points required to compute the measurements specified in the test cases

3.7 Traffic capture
Traffic capture can be computational intensive and can interfere with the measurements. This
feature is configurable through the added field ‘Capture Traffic’ in the “Create Campaign” form.
This is shown in

When the user creates a custom campaign or standard campaign, the user can enable or disable
the traffic capture. For the certification campaigns this option is not available.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 26/277

Figure 16 ‘Capture Traffic’ selector

Figure 17 Display 'Capture Traffic' selection

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 27/277

3.8 TRIANGLE Mark and Spider Diagram
The Portal displays the TRIANGLE Mark and a spider diagram with the score obtained in each
one of the domains.

Figure 18 TRIANGLE mark

3.9 Remote screen
Following a demand from the researchers that have been using the testbed, TRIANGLE now
provides a remote screen option for the TRIANGLE Testbed Portal. This remote screen shows a
live video of what is happening in the physical screen of the device under test using VNC
technology.

To achieve this, we take advantage of the screenshotfeed feature present in the Quamotion
Frontend[http://docs.quamotion.mobi/en/latest/frontend/frontend-devices.html#open-the-
screenshotfeed-for-a-device], adding a basic authentication system to increase the security of
Quamotion solution.

This way, the clients have access to the full Quamotion Frontend when they reserve the
TRIANGLE Portal Testbed. Only the researcher that has made a reservation for a certain time slot
will have access to the Frontend during that timeslot. In the Frontend, under the “Devices” tab,
they will be able to open a new Remote screen session for the device. Additionally, they will be
able to view the status of the sessions started during their experiments (in the “Sessions” tab),
which will give them more information about the execution of their experiment, something that has
also been demanded.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 28/277

Figure 19 View of the screenshot feed feature provided by Quamotion.

3.9.1 Basic Authentication
As already mentioned, TRIANGLE has extended the Quamotion Frontend with a basic
authentication system as a protection mechanism. This way, when a user tries to access the
Frontend a prompt will ask for username and password, which has been previously provided by
the testbed managers.

To increase the security, first we use an Nginx web server with the reverse proxy feature. This
allows us to hide the existence of the Quamotion Frontend server, closing its port to the public,
leaving open only the typical port 80. The Quamotion resources are returned to the client as if they
originated from the Nginx web server.

Additionally, we use the Nginx Basic Authentication feature, forcing clients to use their email (the
same one they use in the Testbed and Booking service) and a password to access the Quamotion
Frontend. This authentication system uses a password file that stores a list of usernames and their
unencrypted password. We, using user’s email as seed, generate the password. This password is
sent to their owners and is permanent.

The password file only contains the username and password of the client that has reserved the
testbed at the present time. For example, if there are no reservations at a given time, the password
file is empty, so nobody can try to access. If there is a reservation at a given time, only the
username and password of the client who did the reservation is stored in the password file at that
given time, so only him or her can try to access.

The editing of the password file is achieved with a Python script that consumes the Booked API to
know if there is a reservation every hour. If there is not, it cleans the password file, deleting any
info that there could be inside. If there is a reservation, it gets the email of the person who did it,

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 29/277

generates the password, as described before, and updates the content of the password file with
this information.

3.10 Booking System
The booking system consists in a web calendar service used by the experimenters to book the
TRIANGLE Portal Testbed. The system is completed with a script that queries the current owner
of the Testbed at the beginning of every hour and updates the Portal Testbed owner accordingly.

3.10.1 Web Calendar Service
The web calendar service used is Booked Scheduler, an open source booking service based in
LAMP that has an API to interact with it, providing the possibility to automate the process.

Booked Scheduler allows a user to define a resource element that will be shared by different
people. This resource element will be associated with a resource schedule that will contain the
resource reservations. In our case, the resource will be the TRIANGLE Portal Testbed. The
capacity of this resource is one person, so only one researcher can use the Testbed at a given
time. The resource schedule is divided in 1-hour slots.

The same email account used to access the Portal Testbed is used to access the web calendar
service to make reservations.

There are several ways to make a reservation. It can be done using any submenu of the “Schedule”
tab.

 From Bookings: Clicking on any slot from the timetable to start making a new
reservation.

 From My Calendar: Clicking on any day of the calendar to start a new reservation.

 From Resource Calendar: The same as in “My calendar”.

 From Find a Time: Search a slot time and click one of the results.

Any of these methods will redirect to the “New Reservation” page. In this page, one can select the
time start and end of the reservation and optionally give it a title and add comments. After clicking
“Create”, the system will confirm the reservation if there are no conflicts.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 30/277

Figure 20 The New Reservation Page allows a user to select a slot time to use the Portal Testbed

Figure 21 Calendar interface. It shows the reservations made. Clicking on any day will take you to
the New Reservation Page.

3.10.2 Testbed Owner Updating
The web calendar service itself only provides the calendar interface to create reservations, but
these reservations alone do not have impact on the TRIANGLE Portal Testbed. In order to

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 31/277

automatically update the testbed owner according to the reservations made in the web calendar a
couple of scripts have been implemented.

The first script, written in Python, uses the Booked Scheduler API to ask if there is a reservation
for the current hour, and if there is one, to get the email of the person who reserved. With this
email, a second script, written in Shell, will update the Portal testbed owner using the Portal Ruby
on Rails console commands.

These scripts are executed at the beginning of every hour, since the web calendar is structured in
1-hour slots. This way, we provide automatic access to the TRIANGLE Portal Testbed for a
researcher when he or she has booked it via the web calendar service.

3.11 Additional Features

3.11.1 Enabling/Disabling Remote Screen
The Portal enables the activation/deactivation of this feature for standard and customs campaigns.

Figure 22 Disabled 'View screen feed' in Standard Campaign

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 32/277

Figure 23 Enabled 'View screen feed' in Custom Campaign

3.11.2 Task ID

This feature shows ‘Execution Task ID’ when displaying the Campaign Execution. This is the same
ID used in the OML visualizer to identify the graphs corresponding to the execution.

Figure 24 Show 'Execution Task ID' in Campaign Execution

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 33/277

3.11.3 Certification campaign
The type ‘Certification’ can be selected in the “Create campaign” form

Figure 25 Show 'Certification' type in Campaign creation

Figure 26 Show Campaign type in Campaigns view

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 34/277

Figure 27 Show Campaign type in each Campaign and remove Scenario and Control Traffic if type

'Certification’

Figure 28 Show Campaign type in each Campaign and show Control Traffic if type 'Custom’

3.11.4 TRIANGLE Report Generation
The portal includes the capability of generating a TRIANGLE test report in PDF format. This
testnreport will provide a top-down view to track the results in each of the domains and test cases

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 35/277

executed. The report structure, style and content are based on the template defined in the
deliverable TRIANGLE D2.2 (TRIANGLE_D2_2_Apx_Test Report template.dot).

This generator has been implemented as a Python module and it uses the library python-dox [40].
This module has been integrated into the TRIANGLE portal architecture as depicted in Figure
29.There are two inputs to the module: The report template and the actual data, which comes
down from the user interface portal in a YAML file.

Figure 29 TRIANGLE Report Generation flow

There is an example of report in Annex 9.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 36/277

4 Orchestration

4.1 Test Automation Platform (TAP)
This section provides the features of the control tool selected to carry out the orchestration of the
testbed. This orchestration is needed to coordinate the different components of the testbed. The
accuracy provided by OMF is not enough to synchronize the executions of the network behaviours
(such as handovers), app actions and the collection of the measurements. In other words, OMF is
not well-suited for time sensitive operations.

TAP provides flexible and extensible test sequence and test plan creation. TAP is a Microsoft
.NET-based application that can be used stand-alone or in combination with higher-level test
executive software environments developed by Keysight. Leveraging C# and Microsoft Visual
Studio, TAP is a platform upon which it is possible to build tests solutions.

TAP plays a key role in TRIANGLE as it allows controlling and automating all the instruments
present in the testbed. Included with Keysight TAP is the core sequencing engine, tools and plug-
ins to minimize test system development time and test execution speed.

Figure 30 TAP architecture, showing core sequencing software engine.

4.1.1 Core Sequencing Engine
The Core Sequencing Engine is the “heart” of TAP, designed for speed-optimized test step
execution. Tests (called test plans in TAP terminology) can include simple flow operations such as
IF and LOOP. Complex hardware setups and parallel tests steps are also supported. The graphical
interface of the core engine is shown in Figure 31.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 37/277

Figure 31 TAP’s Core Sequencing Engine and GUI

4.1.2 Timing Analyzer
TAP’s Timing Analyzer Tool provides insights into optimizing the overall test execution speed. It
also allows visualizing the overall and in depth test execution time to see how much time each test
step requires. The Timing Analyzer Tool is shown in Figure 32.

Figure 32 TAP’s TAP’s Timing Analyzer test step’s execution information

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 38/277

4.1.3 Results Viewer
Each time a TAP test plan is executed the results are stored in a database in TAP which can be
graphed and visualized using the TAP Results Viewer. Multiple data sets can be viewed to quickly
compare results across different test runs (i.e., several executions of the same test). The Run
Explorer helps manage test plan data, recall old test plans, merge and compare test log timings,
compare test plan settings, search for specific test results, and plot them using the Results Viewer.

Figure 33 TAP Result Viewer provides a quick and flexible test run data visualization.

4.1.4 Test Plan Reference called as External Parameter
In TAP terminology, a Test Plan Reference test step is a special test step which allows TAP to call
any 3rd party test plan to be executed in a sequence as a single test step. Despite the potential
complexity of the called test plan, this is transparent to the original test plan. The parent TAP test
plan cannot modify fields within the called test plan, guaranteeing no interference between master
test plan and called test plan when using the test plan reference test step.

TAP additionally allows some fields within the test steps to be declared as External Parameters.
These fields have a default value, but when launching TAP from a command line interface, can
have their value replaced by the command line requested value, further increasing the flexibility of
a single test plan. Indeed, the user can reuse a single TAP test plan with a large combination of
parameter values, simply by declaring them as external and crafting command line calls with
different values.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 39/277

Figure 34 External Parameter setting & command line execution

Figure 34 shows an example of a TAP test plan which is created with a Delay step, using a Time
Delay parameter called “DelayStepA” set to a default value of 5 seconds. At execution, the external
parameter is forced to 7 seconds and the delay step executes for roughly 7 seconds.

TAP 8 combines the two above-mentioned features to bring increased flexibility in the creation of
dynamic test plans, by enabling Test Plan Reference test steps to be called as external
parameters. This means that whole subsections of TAP test plans can be replaced at each test
execution, by pointing the external parameter’s value to another 3rd party test plan.

4.1.5 TAP server
TAP offers the new feature to run as a server, listening to remote connections received via TCP or
through REST API, to execute test cases at will. This enables a lab PC running TAP to receive
asynchronous test requests from web interfaces, without exhibiting the access to the lab to the
experimenter.

4.1.6 .NET Core
TAP moved from .NET to .NET Core to increase its compatibility with more platforms and be more
flexible in its deployment.

4.1.7 TAP plugins
This section introduces the TAP plugins implemented to configure and control the different
components of the TRIANGLE testbed. Figure 35 shows the hardware and software components
of the testbed and the drivers associated to each one of them.

In TAP, an Instrument is a logical entity that encapsulates the interaction with a physical
instrument. At the very least, a TAP instrument must define all the necessary logic for connecting
and disconnecting the TAP host machine with the real instrument, and it is best practice to define
methods for performing every possible (or required) actions that the instrument can execute.

For example, a TAP instrument for controlling a real power supply via SCPI must include two
methods (Open and Close) that create and release the connection with the instrument and can
have two extra methods for setting the voltage and current.

Instruments are extensively used in TAP steps, which expose the instrument functionality to the
end user. Continuing with the previous example, we could define two steps for this instrument:

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 40/277

One that turns off the power output, setting voltage and current to 0, and another that sets the
voltage and the current using the values selected by the user in the test step configuration. TAP
will automatically use the Open and Close methods from the instrument when required.

Figure 35 TAP pluging for the hardware and software components of the testbed

Table 7 provides a brief description of each one of the TAP plugins implemented.

Table 7 TAP plugins implemented

TAP plugin Description

Quamotion WebDriver This plugin allows TAP to send user actions (such as
tapping a button or entering a text in a field) through the
use of Quamotion WebDriver. The plugin will provide an
instrument to connect to the Quamotion WebDriver, as
well a series of test steps.

OML server This plugin allows TAP to send the results reported during
an experiment to an OML server (which will store them in
a database).

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 41/277

Instrumentation library This plugin allows TAP to parse logs from devices to
extract measurements produced by the instrumentation
library. These measurements will be published and
processed by the corresponding result listeners. This
plugin does not provide any additional instruments.

Android This plugin provides a collection of steps that can be used
for controlling an Android device connected to the
TRIANGLE testbed through the Android Device Bridge.

iOS This plugin allows TAP to control an iOS device in order to
perform key actions, such as restart, save logs, capture
network traffic and launch apps. An iOS device can be an
iPhone, iPad or iPod Touch.

RF switch This plugin provides steps and an additional instrument for
controlling a LXI-compliant 11713C attenuator/switch
driver available on the TRIANGLE testbed. This switch
driver is used alongside Keysight L7104A electro-
mechanical switches, in order to allow the users to select
one of the available devices in the testbed at any given
time.

GPS emulation This plugin provides the instruments and the steps to
configure and control the GPS emulation feature
introduced in Section 11.

Dynamic Sequence Plugin In order to efficiently enable the parallel test execution
structure described in 4.2.5, a new plugin needs to be
introduced, called DynamicSequence, has been
introduced.

Iteration-aware result listener
plugin

A test case requires to be run multiple times to reach
statistically meaningful and converged test results.
Results from each iteration need to be saved separately
to calculate KPIs, and pinpoint possible sporadic
performance outliers. To achieve iteration-aware tagging
of test results, a new Result Listener has been added to
TAP, injecting the application flow iteration into the test
results.

KPIs calculation plugin The plugin is aware of the domain, use case and test case
of the results it receives as input, and calculates the
relevant KPIs for this combination.

Plugins to reach TAP server This plugin enables to reach remotely a TAP server which
implies that the Orcomposutor can reach a TAP server
installed in a different machine to run the composed TAP
test plans.

DEKRA This plugin enables to control the DEKRA Performance
Tool from TAP to collect UE measurements during the
executions of the TAP test cases.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 42/277

VELOX This plugin enables to use from TAP the RedZinc VPS
Engine or Velox, an over-the-top-content enabler.

MANO This plugin enables to configure and control the
Management and Network Orchestration from TAP plugin.

StreamOwl This plugin is using to control the video analysis tools
developed by StreamOwl.

4.1.8 TAP Test Plan Master Template
The TAP test plan master template includes the sequence of actions that will be executed during
the campaigns. The orcomposutor creates an instance of this template each time it executes a test
case. The information provided by the user and the measurements defined in the test cases are
used to deliver the final instance of this template that will be executed.

The final master template includes:

- Setting of the test plan reference as external parameters, to be called via command line
- All parameters of these test plan reference are set as external parameters within these test

plans, so that they can be set again as external parameters in the master template
- Simultaneous capture of

o Cellular statistics and device resource usage using the TACS4 agent and DEKRA
TAP plugin, no matter the application flow.

o Testeldroid logs (delivers PCAP files useful for traffic analysis).
o Android Logcat (provides Android debug logs useful for all application domains).
o Power consumption of the DUT via USB as well as fake battery connector.

The overall master template follows the high-level structure below:

1. Test case labeler
2. Instruments configuration

1. UXM configuration
2. Power analyzer configuration
3. Other instruments configuration

3. Connect the DUT
4. Configure the DUT
5. Initialization of the TACS4 agent

1. Configure the device automation profile to idle
6. Test body (repeat over X iterations)

1. Test execution (parallel execution)
A. Application flow

1. Start of non-blocking measurements (Testeldroid, WebDriver)
2. Execution of blocking measurements (parallel)

A. TACS4 test run
B. App flow run (Quamotion flow execution)

3. Stop of non-blocking measurements
B. Network scenarios

1. Subscenario 1
2. Subscenario 2
3. Subscenario N

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 43/277

2. Retrieve data per iteration
3. Connectivity clean-up

7. Retrieve data per test case

Notes:

- The bullets marked 1. or 2. are executed successively, whereas bullets A. and B. are
running simultaneously (in parallel).

- Most of the bullets above are actually references to other test plans, meaning that the
template keeps its generic structure even if the nature of the DUT or test case changes

- The measurements are split into blocking (which will keep the test flow on hold until they
are completed) and non-blocking (which are started in a single step and run in the
background). For this reason, the blocking measurements are all combined in a parallel
loop, to avoid blocking the rest of the test case logic.

- The center-core test step which dictates the actual duration of the test case still is the
Quamotion application flow (replay of a powershell script through the Quamotion plugin).
All other measurements or network scenario emulation are started before the app flow
replay starts, and are stopped right after it stops, as only measurements when the app flow
is running will be kept for post-processing.

4.1.9 DEKRA tool TAP plugin
From Release 2 onwards DEKRA has provided several updates of the DEKRA tool TAP plugin.
The plugin change log can be summarized with the following highlights:

 Support for TAP 8

 Contest Stall measurements (see section 5.2.10)

 GPU Usage measurements (see section 5.2.10)

 Robotic arm integration

 Minor bugs and other maintenance updates

Out of these upgrades the major one has been the implementation of the TAP plugin for the
integration of the robotic arm platform [D3.2]. The TAP plugin was implemented during the Release
2 timeframe, an integrated in Release 3 of the TRIANGLE testbed.

The robotic arm platform was implemented to meet the technical requirements derived from the
Virtual Reality, Gaming and Augmented Reality test specification, mostly on the ability to physically
move the device.

From Release 3 onwards DEKRA has provided several updates of the DEKRA tool TAP plugin.
The plugin change log can be summarized with the following highlights:

 The radio and system monitor measurements have been changed to be reported in rows.

 The robotic arm with iOS support has been integrated.

 The data services can be loaded in a TAP test plan.

 Integration of the WLAN Access Point automation module (see section 5.2.10).

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 44/277

 Minor bugs and other maintenance updates

In Release 4, the module includes support for iOS devices and the TAP plugin has been updated
accordingly.

In addition to supporting iOS some improvements have been implemented in the robotic arm
module and properly integrated in the TRIANGLE testing framework:

 A “timeout” parameter has been added in the functions which require Image Recognition.
In Release 3 the timeout was hardcoded to 30 s.

 A “speed” parameter has been added in the functions which require movements of the
robotic arm. In Release 3 the speed of the arm was hardcoded to “very fast” leading to high
aiming failure rate.

 A “matching score” parameter has been added in all the functions which require Image
Recognition. In Release 3 the timeout was hardcoded to 90 %.

 New function to support “press” (in Release 3 only short tap and swipe was implemented).

 New function to implement “lagging” performance indicator. This function finds and taps on
a target image and then it measures the time to find a second image. This function is
intended to implement the performance indicator “lagging” (response time) for Gaming use
case.

Annex 8 presents the modifications (compared to Release 3) on the specification of the Remote-
Control Interface service.

4.2 Quamotion Automation Tools
The Quamotion Automation Tools have been used in the context of the project as interface to
interact with the apps and the devices under test.

The Quamotion WebDriver is able to automate user actions on iOS and Android applications
whether they are native, hybrid of fully web based. The Quamotion WebDriver handles the full
lifecycle of app usages (installation, starting and automation) without any manual interaction. The
only requirements are a valid application package (apk or ipa file) and in case of iOS a
DeveloperProfile and the iOS DeveloperDisks.

The design of Quamotion WebDriver follows the specifications of the W3C WebDriver
specification. In origin, the WebDriver provides a platform- and language-neutral protocol to
remotely instruct the behaviour of web browsers.

The Quamotion WebDriver is an extension on the WebDriver specification and adds specific
support to manage mobile devices and mobile applications. The Quamotion WebDriver is able to
instruct the behaviour of mobile application similar to instructing the behaviour of web browsers.

The following instructions are added on top of the standard WebDriver instructions in order to
support test automation for mobile applications.

Table 8 Command reference for mobile extensions to the WebDriver

HTTP
method

Path Summary

POST /session Creates a new session, starting
the application on the device.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 45/277

PUT /quamotion/developercenter/profile Creates a new Apple developer
profile.

POST /session/:sessionId/quamotion/elementByCoordinates Search for a visible element in
the page which matches the
coordinates

POST /session/$sessionId/touch/clickByCoordinate Clicks on the visible element
which matches the coordinates

POST /quamotion/app Adds an app to the Quamotion
WebDriver app repository.

GET /quamotion/app Gets all applications in the
Quamotion WebDriver app
repository

GET /quamotion/device Gets all devices which are
available to test

POST /quamotion/device/$deviceId/app/$appId Installs the application on the
device

POST /quamotion/device/$deviceId/app/$appId/$appVersion Installs the application on the
device

GET /quamotion/device/$deviceId/app Gets all installed applications
on the device

DELETE /quamotion/device/$deviceId/app/$appId Uninstall the application from
the device

DELETE /quamotion/device/$deviceId/app/$appId/$appVersion Uninstall the application from
the device

DELETE /quamotion/device/$deviceId/app/$appId/settings Deletes the settings of the
application installed on the
mobile device

DELETE /quamotion/device/$deviceId/reboot Reboots the device

App flow scripts can be written in multiple languages e.g. PowerShell, Java and C#. Within the
TRIANGLE project PowerShell has been selected because:

 PowerShell provides the necessary flexibility

 PowerShell is a script language and does not require compilation after each change

 PowerShell has minimal installation overhead. Windows 10 comes by default with a
PowerShell editor.

A Powershell script looks as follows:

Click-Element -xpath "input[@name='email']"

 Enter-Text "bart.saintgermain@quamotion.mobi"
 Click-Element -xpath "input[@name='pass']"
 Enter-Text "a strong password"
 Click-Element -xpath "button[@name='login']"

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 46/277

The script above automates the login activity. It first clicks on the email text field and enters the
email. Next it clicks on the password field and enters the password. Finally, a click is performed
on the login button.

The Quamotion WebDriver provides through the Quamotion Frontend all necessary tools to
generate an app user flow script.

4.2.1 Quamotion WebDriver support
The Quamotion WebDriver allows to create and execute user flows on both Android and iOS
devices. Versions from 5% market share are actively supported including most recent Android and
iOS versions.

The Quamotion WebDriver is available for Windows, Linux and Mac computers.

Two types of automation exist, application automation and device automation.

Application automation instruments the application to automate any gesture, find elements and
asses element properties from within the application sandbox.

To do so the application (ipa/ apk) is unpacked, altered (without modifying the app logic), packed,
resigned, pushed to the device, installed and started with Quamotion support. This is an automatic
process and does not require any manual step.

Advantages:

 Speed

 Access to any element property

 Recording the app user flow is supported

Disadvantages:

 No possibility to automate OS specific elements (e.g. settings, push notifications, …)

 Resigning with non-original certificate is detected by some applications and triggers
different behaviour or blocks the launch of the application.

 Limited support for WebViews

Device automation automates the device UI by making use of operating system hooks. These
hooks are available for both Android and iOS. An agent is installed on the mobile device which is
responsible to handle all automation requests.

Advantages:

 Possibility to automate any element in the screen.

 No application resign needed.

 Support for WebViews

Disadvantages:

 Only limited access to accessible UI properties.

 No application flow recording is supported.
note: application flow editor (Spy and code generator) can still be used

 Slower execution and Spy.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 47/277

 Agent has bigger impact on device resources like CPU and battery usage.

4.2.2 Quamotion Frontend

The Quamotion frontend is web based and composed out of an “Apps” page, “Devices” page and
a script editor of “Spy” page.

App management

With the App management you can list, add and remove applications to the Quamotion WebDriver
application repository. Information about the application e.g. unique application id, version number,
can be retrieved.

Device management

The device management lists all devices connected to the computer running the Quamotion
WebDriver. Basic information about the device can be retrieved, e.g., the serial number of the
device.

Selecting the device gives you the ability to launch Remote Control.

A performant screenshot feed is made available mirroring the mobile device screen. On Android
the screenshot feed goes up to 40 fps on iOS 10 fps. This videofeed can be captured and stored
on disk by standard tools like ffmpeg.

The Quamotion WebDriver comes with the ability to remotely control a mobile device from the
chrome browser or from a standard VNC client.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 48/277

4.2.3 Quamotion Script Editor
The Quamotion script editor contains several tools to assist a user in creating script: a spy, a
recorder tool and an editor tool.

Spy

Based on an active session and the remote device display, users are able to click on an element
in the screen and retrieve all information about the user interface widget being selected. The spy
shows the following information

 The XPath of the widget identifying uniquely the widget, which can then be used in the
script to find elements

 A tree showing the ancestors of the widget.

 All available properties of the selected widget

 The widget is highlighted in the remote device screen

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 49/277

Recorder

The recorder generates a script based on the user interactions on the device. Gestures like
Tapping and entering text are recorded. For each user action on the device a command is
generated.

Note that the recorder will not generate automatic checkpoints. After recording, the script needs to
be fine-tuned and enhanced manually in the editor.

Editor

The script editor allows to create and edit an application flow for both Android as well as iOS
applications. There is no need to write code for basic scenarios.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 50/277

Figure 36 Quamotion WebDriver script editor

The script editor provides templates for the most common commands such as those listed in table
5

Table 9 Commands provided by the Quamotion Webdriver script editor

Command Description Properties

New session Create a new session

Remove session Remove the current session

Click element Click on an element with the given
xPath

xPath

Send keys Send keys to the keystroke Text

Dismiss keyboard Dismiss the keyboard

Clear text Clear the text of the active text field

Enter text Enter text performs:

1. Click element

2. Clear text

3. Send keys

4. Dismiss keyboard

xPath

Text

Go back Press back button

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 51/277

Implicit wait Set the maximum allowed time to
wait for an element

Time (milliseconds)

Explicit wait Wait for the given time Time (milliseconds)

Test element Test whether an element with the
given xPath exits

xPath

Test property value Validate a property of an element xPath

Property name

Expected property value

Get property Get the value of a property xPath

Property name

Set property Set the value of a property xPath

Property name

Property value

Get element Get the first element corresponding
to the given xPath

xPath

Get elements Get all elements corresponding to
the given xPaht

xPath

The application flow can be exported to a PowerShell script. This application flow can be uploaded
and used in the TRIANGLE portal.

4.2.4 Script Replay
The script can be replayed in any PowerShell environment.

End users can try the script using e.g. the preinstalled window 10 PowerShell editor. Note that
PowerShell is also distributed for other operating systems like Linux, macOS or older windows
versions.

In the testbed a docker container containing PowerShell is used to execute the script.

Docker execution

Executing scripts on the portal leads to vulnerabilities in the portal. Not only it is possible to harm
the server on which the script is executed but also on the mobile device.

To avoid this, several docker containers are made available to isolate the different components:

 Filter proxy
Instead of allowing access to all devices the filter proxy allows only connections to one
device. This is available for both ADB and usbmuxd.

 Quamotion WebDriver
Contains the Quamotion WebDriver and is connected to one or more filter proxies

 Quamotion Runner

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 52/277

Contains PowerShell and executes app user flow scripts. A new container is launched for
each test run. Harmful scrips will only affect this container.

4.3 Secure Execution of Scripts Generated by Users

Figure 37 Userflow execution architecture

Due to the flexibility of Powershell scripting it would be possible to include malicious code inside
the userflows provided by the users. In order to avoid security issues, we adopted the architecture
shown on Figure 37.

For every task in a campaign execution a new Runner container is created using Docker. This
container downloads the Userflow script from the Orcomposutor and executes it, sending
commands to the Quamotion server running on the host machine. The server communicates with
the UE using ADB.

Docker containers have limited access to the resources on the host, which creates a safe
environment were the scripts can be executed. These containers are discarded at the end of the
test, retrieving only the execution logs in plain text. Because of this, any possible issue caused by
a malicious script will only affect the Runner container, which, in turn, is limited to causing the
current test to fail.

4.4 Android Debug Bridge (ADB)
Android Debug Bridge (ADB) [5] is a command-line tool provided by the Android SDK. It lets the
user communicate with an Android device to perform actions on it, or to send commands to an
app. The tool follows a client-server approach, with clients that send commands, daemons that

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 53/277

runs the commands on a device, and a server that handles the communication between clients
and daemons. The daemons run on the Android devices, will the clients and server typically run
on a development machine.

Figure 38 ADB usage scenario

Many tools use ADB to interact with an Android device or the apps running on it. For instance,
Quamotion WebDriver uses ADB to send the user actions as commands that can be performed
on the device. TestelDroid (introduced in section 5) is controlled through intents (inter-app
messages used in Android) sent using ADB.

4.5 PTP Synchronization
Precise Time Protocol (PTP), also known as IEEE 1588, is a communication standard used for
clock synchronization between different instruments/machines. The expected accuracy of PTP in
a local area is in the order of microseconds. PTP is designed for systems with stricter requirements
than what Network Time Protocol (NTP) protocol can provide.

PTP is used in the testbed to keep accurate time synchronization between the different instruments
in the testbed.

4.6 Orcomposutor
The ORchestrator-COMPOSer-execUTOR (Orcomposutor) is a server with a REST API that runs
on the same Windows machine as TAP. Its purpose is to bridge the Portal and TAP.

Once all the required information has been entered in the Portal, the TRIANGLE testbed end user
can proceed with the experiment. The first step would be to take the information entered and turn
it into executable TAP test plans. This is the task of the test plan Orcomposutor. According to the
features introduced in the Portal for the product under test, the Orcompusutor will generate the
applicable test plans.

To create the required TAP test plans, the Orcomposutor uses pre-defined TAP test plan
templates. When possible, the Orcomposutor will take advantage of two TAP features: the ability
to expose parameters of a test step to external callers, and a test step that allows the execution of
another test plan.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 54/277

For instance, many test plans will start by setting up the network scenario and configuring the
required parameters in the Testbed equipment. This setup is the same, regardless of the body of
the test plan. Thus, the Orcomposutor reuses existing TAP test plans that configure particular
network scenarios.

For an app test, the body of the test plan typically includes replaying the user actions contained in
an app user flow provided by the app developer. The Orcomposutor gets the app user flow from
the Portal, and sets the corresponding external parameter of the WebDriver replay test step.

The Orcomposutor is also aware of which KPIs are going to be measured with each of the
generated TAP test plans. If necessary, the test plan should provide explicit support for performing
the measurements required for the KPIs. For instance, if a test plan will contribute to a KPI on
power consumption, the power analyser must be configured and used in the test plan. In addition,
the information on which KPIs are going to be measured by each test plan must be passed along
in the workflow.

Each of the TAP test plans created by the Orcomposutor can then be executed in the Testbed
using TAP. The TAP test plan contains all the information required to execute a test automatically.

During the execution of the TAP test plan, the measurement tools will gather measurements. The
measurement tools that are fully integrated with TAP will publish them as usual. In this case, the
results will be handled by a TAP result listener that sends them to a central OML server. This OML
server uses a PostgreSQL database server to store the measurements. Some tools may include
OML support, and thus send their measurements directly to the OML server.

The main functions of Orcomposutor can be summarized as follows:

 Accept test campaign execution requests from the Portal.

 Compose the TAP test plans required to run a test campaign and its test cases.

 Execute the TAP test plans.

 Upload the results of the execution to the Portal.

To carry out these functions, Orcomposutor needs to communicate with the REST API of the Portal
backend (described in Section 3.5), and with the OML database.

4.6.1 REST API
Orcomposutor has a REST API that exposes the following methods:

Table 10 Orcomposutor REST API

URL Description Caller

[GET]/run_campaign?id=
<id>

Request to execute a campaign.
Portal

[GET]/retry_campaign\?id
=<id>&execution_id=<e_i
d>

Requests to retry a campaign execution.
Portal

[GET]/generate_user_flow
s\?id=<id>

Requests the generation of userflows for
Model Based Testing campaigns

Portal

[GET]/download_user_flo
w

Serves a copy of the current userflow.

Runner container

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 55/277

[GET]/upload_user_flow_l
og

Serves the userflow execution logic
Runner container

[GET]/available Check Orcomposutor availability
Queue manager
Administration
console

These method returns immediately. In the case of the Portal the backend will be updated
periodically with the progress of the test campaign execution or the status of the userflow
generation.

4.6.2 TAP Test Plan Composition and Execution
The request to execute a test campaign only includes the identifier of that campaign. Orcomposutor
uses that id to request more information about the test campaign to the backend using its REST
API. This information is used to determine which test case or test cases must be executed with
TAP. A test campaign might include more than one test case, in that case the Orcomposutor will
prepare the execution of more than one TAP test plan.

TAP test plans contain several external parameters and test plan references that must be filled in
before execution can start. Orcomposutor must retrieve the appropriate information from the
backend REST API in order to fill in these blanks, such as the id of the device used in the test
case, or the network scenario. In the latter, Orcomposutor must select the appropriate TAP test
plans that include the initialization and dynamic configuration for each scenario. We call the
selection of this parameters and referenced TAP test plans the composition of the test plan.

Once the TAP test plan has been composed, it can be executed with the TAP CLI. Orcomposutor
will store the TAP logs, as well as internal logs for diagnostic purposes.

4.6.3 Results
Once a TAP test plan has been executed correctly, Orcomposutor will upload the corresponding
results to the Portal backend. These results include:

- Results collected in the TAP database from testbed instruments and tools (including the
instrumentation library)

- Logs from the device (e.g. logcat for Android devices)

- Traffic capture in pcap format

4.6.4 Additional Features

Dynamic Scenarios and TAP Master Template

Executing dynamic scenarios, which make use of the TAP master template, requires a different
set of external parameters. It is necessary to use several testplan references: one for configuring
the initial network conditions and up to five testplans that are executed randomly simulating the
changing conditions of the network.

The TAP master template delegates the configuration of the device under test test (for example, it
is possible to use the same master template for Android and iOS devices) and other instruments
to specific testplan references. The information about which testplans are required depending on

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 56/277

the scenario and test conditions is stored in several files in yaml format, which allows easier
customization without the need to edit the source code of the Orcomposutor.

Multiple Executions for All Available Domains

The Orcomposutor is able to execute each test case multiple times with various configurations for
all the available domains. The results generated by each of these executions are uploaded to the
TRIANGLE Portal organized in different folders inside the generated zip files.

KPI Extraction

The Orcomposutor is able to automatically execute the corresponding KPI extraction steps for any
given domain. These KPIs are used during the TRIANGLE Mark calculation and are uploaded with
the additional generated measurements to the Portal.

TRIANGLE Mark Calculation

Once the campaign has finished and all the KPIs have been generated, the Orcomposutor will
initiate the ETL processing, obtaining the TRIANGLE mark and all the intermediate results of the
test. These results will be uploaded to the Portal.

TAP Logging Upload

To facilitate the debugging of failed campaign executions the loggings generated by TAP are
uploaded to the Portal alongside the results. Using these “logs”, the experimenters can have a
better understanding of the issues encountered during the execution.

Execution Error Management

The TAP master template also includes additional checks for ensuring the correct execution of the
App Userflows during a test. Thus, the testbed is able to capture exceptions that may occur while
the userflow is being played by checking at the contents of the generated logs.

If the testbed detects an error, the Quamotion server is automatically restarted, and the App
Userflow is executed again. This process is repeated up to 3 times, in order to avoid an infinite
loop in case of an unrecoverable error.

Figure 39 Testbed scheduling and management architecture

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 57/277

Loose Processes Handling

During a testplan execution and under some rare circumstances, some of the child processes
created may reach a state in which they are not correctly closed. This would cause that the
communication channel between TAP and Orcomposutor remains open indefinitely, requiring to
manually close the remaining processes from the system.

In order to avoid this situation, the Orcomposutor includes the ability to monitor the messages
generated by TAP, looking for patterns that signal the end of a testplan execution (such as the
closure of the TAP instruments). The Orcomposutor then checks if the TAP process has closed
successfully and, if not, checks for the presence of remaining processes. If this is the case, the
Orcomposutor will automatically close them, which, in turn, releases the communication channel,
allowing the campaign execution to continue.

Campaign Execution Retries

Due to the complexity of the systems which compose the testbed, it is possible for a campaign
execution to fail in rare occasions. In order to avoid re-executing the tasks that finished successfully
during these executions, the testbed allows to retry only failed tasks, sparing the rest of the tasks
of the campaign. This feature is particularly useful in the case of certification campaigns, which
can last for several days under normal circumstances, and would otherwise have to be repeated
entirely in case of an error in the last task.

Figure 40 Campaign retries in the TRIANGLE portal

The execution retry is available for the users of the TRIANGLE portal as a button that is available
for errored campaigns. If the user choses to retry an existing execution, the Orcomposutor will
check which of the required campaign tasks where completed successfully. These tasks will be
removed from the internal list of tasks, scheduling only the execution of failed and pending tasks.

Due to the process followed in the ETL framework the fact that a campaign has been retried has
no effect on the final TRIANGLE mark calculated for the campaign.

4.7 Execution Manager
In order to improve the utilization of the TRIANGLE testbed, it is possible to queue several
campaign executions at a time. These campaigns will be executed successively by the testbed,
avoiding idle periods of time while waiting for a user to start the execution of another campaign.

This has been achieved by means of a queue management layer between the TRIANGLE portal
and the Orcomposutor.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 58/277

Figure 41 Testbed scheduling and management architecture

The Portal sends execution requests to the queue manager, which is acknowledged by creating a
new campaign execution, which is set to the ‘Pending’ status. The queue manager then checks
the availability of the testbed: If nothing is running the new campaign is automatically started, but
if the testbed is not available then the campaign is kept in the queue until the Orcomposutor notifies
that the current execution has been finished.

Figure 42 Pending campaigns in the TRIANGLE portal

The communication between the components is performed via several REST APIs. In order to
reduce complexity and execution delays, the Orcomposutor is still able to communicate directly
with the Portal once a certain campaign execution starts: Only messages related to the scheduling
of executions are passed through the queue manager.

4.7.1 Administration Console
The inclusion of this scheduling layer between the TRIANGLE Portal and the Orcomposutor allows
to create a new administration interface for testbed management. The Administration Console
communicates with the Portal and the queue manager using their REST APIs, and is able to modify
the contents of the execution queue, while displaying useful information about current or past
executions and campaigns.

The Administration Console is currently able to:

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 59/277

- Display information, such as creation, execution and wait times of queued, running or
finished campaigns.

Figure 43 Campaign execution information

- Cancel running or queued campaign executions. The Administration console will remove
canceled executions from the queue or stop them if running. The status of these executions
will be set to ‘Error’ in the TRIANGLE Portal.

Figure 44 Cancelling a running campaign

- Display information about specific campaigns or campaign executions. This is currently
done by displaying the information saved in the TRIANGLE Portal.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 60/277

Figure 45 Campaign information

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 61/277

5 Measurements and Data Collection
The testbed has integrated two tools, TestelDroid and DEKRA Performance Test Tool, which
enable the instrumentation of mobile devices to collect data traffic information and OS API
information. The testbed also includes a N6705B power analyzer to collect energy measurements
from UEs. To collect measurements and information from apps which cannot be accessed in any
other way, an instrumentation library will be provided to app developers. Finally, all the collected
measurements will be sent to a central OML server.

5.1 TestelDroid Monitoring Tool
TestelDroid is an Android app envisaged to take advantage of the engineering features provided
by current commercial smartphones for the development of advanced monitoring tools for mobile
devices.

The features offered by TestelDroid are the following:

• Network information: Current operator, RAT (Radio Access Technology), cell identity, LAC
(Location Area Code), RSSI (Radio Signal Strength Indicator), PSC (Primary Scrambling
Code).

• Neighboring cell information: PSC, RSSI and type of network (not available for Samsung
based phones, such as Samsung Galaxy S or Nexus S).

• GPS information: Longitude, latitude, altitude and speed.

• Traffic: Network traffic (monitoring mode displays only some information of the packet, such
as protocol, IP source/destination or ports involved), using tcpdump. TestelDroid provides
pcap format files containing the traffic captured.

Besides monitoring and logging, TestelDroid allows:

• Connectivity tests: In order to diagnose connectivity issues

o Ping a host (ping options are configurable)

o Test if a port is open on a specified host

• Traffic test: Server-Client model, allows the transfer of an auto-generated file (size can be
specified) between two devices. Speed is monitored on the server side and an average size
is provided upon completion of the file transfer

To enhance its integration in the TRIANGLE testbed, a number of extensions have been added
to TestelDroid. The extensions include support for Standard Commands for Programmable
Instruments (SCPI), cOntrol and Management Framework (OMF) and OMF Measurement
Library (OML). SCPI is the most widespread interface for measurement equipment control in
many areas. OMF and OML extensions enable powerful orchestration framework languages that
reduce the time required to define tests.

Table 11 TestelDroid configuration and control API

Command Purpose Q

*RST Reset the System N

*IDN? Return a string with the name and version of
the application

Y

*STB? Return a byte with the status, e.g.,: 0x00: idle,
0x01: running, 0xFF: error

Y

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 62/277

SETup:NETwork:RESTart Restart the network (e.g.: using flight mode,
searching network, etc.)

N

SETup:MEASurement:START Start a measurement session (which includes
starting the service under test)

Y

SETup:MEASurement:STOP Stop a measurement session (which includes
stopping the service under test)

Y

SETup:MEASurement:CONF:

NETwork:ENable

Enable/Disable the NETWORK measurement
(default on)

Y

SETup:MEASurement:CONF:TRAFfic:

ENable

Enable/Disable the TRAFFIC measurement
(default on)

Y

SETup:MEASurement:CONF:GPS:ENable Enable/Disable the GPS reading

(default off)

Y

SETup:MEASurement:CONF:

NEIGHbour:ENable

Enable/Disable the NEIGHBOUR
measurement (default off)

Y

SETup:MEASurement:CONF:PROFile:ENable Enable/Disable the PROFILE measurement
(default on)

Y

SETup:MEASurement:CONF:PROFile:

SCENario

Add information about the context in which
measurements are collected: vehicular, static,
pedestrian or high-speed. This information is
provided by the user of the tool. This
information is very useful during the analysis
and interpretation of the information collected
by TestelDroid.

Y

SETup:MEASurement:CONF:PROFile:TECH Define the network access technology, can be
Mobile (generic and default), GSM, HSPA,
LTE, UMTS,or Wi-Fi

Y

SETup:MEASurement:CONF:PROFile:

CONFiguration

Add information about the context in which
measurements are collected: Fixed-Fixed,
Mobile-Mobile, Mobile-Fixed. This information
is provided by the user of the tool. This
information is very useful during the analysis
and interpretation of the information collected
by TestelDroid

Y

SETup:MEASurement:CONF:PROFile:SUBID String identficating the SubId that will be used
to generate the capture id, which has the
following format YYYYMMDDHHSUBID

Y

SETup:MEASurement:CONF:PROFile:PEERID String identifying the PeerId of the node,
which can be 1 or 2, or NA to disable the use
of PeerIds

Y

SETup:MEASurement:CONF:PROFile:

COMMENTS

To add comments from the user. This
information is provided by the user of the tool.
This information is very useful during the
analysis and interpretation of the information
collected by TestelDroid

Y

RETrieve:MEAS:NETwork? Returns the network file, the format might be: Y

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 63/277

INTEGER,ASCII_STRING,INTEGER,BINAR
Y_STRING

First integer is the length of the filename, the
ascii_string is the filename, the next integer
is the file size and the binary string is the
content of the file.

Network file format: <timestamp> <RAT>
<Cell ID> <LAC> <RSSI> <MCC+MNC>
<PSC>

RETrieve:MEAS:GPS? Returns the GPS file in the same format than
the NETwork file.

GPS file format: <timestamp> <latitude>
<longitude> <speed>

Y

RETrieve:MEAS:BATTERY? Returns the BATTERY file in the same
format than the NETwork file.

Battery file format: <timestamp> < µW >
(available only when kernel has been
modified)

Y

RETrieve:MEAS:NEIGHbour? Returns the NEIGHBOUR file in the same
format than the NETwork file.

Neighbour file format: <timestamp> <PSC>
<RSSI> <RAT>

Y

RETrieve:MEAS:PROFile? Returns the PROFILE file in the same format
than the NETwork file.

Profile file format:
<label>context_comment</label>

Y

RETrieve:MEAS:TRAFFIC? Returns the TRAFFIC file in the same format
that the NETWORK file

Traffic forma file: pcap

Y

5.2 DEKRA Performance Tool
5G test scenarios will require high resolution for reporting target QoS KPIs. The TRIANGLE Testing
Framework will provide up to layer 7 SDU packet resolution in the computation of data performance
KPI thanks to the integration of the DEKRA Performance Tool.

This tool is composed of two components, Controller and Agents (data endpoints), and uses
proprietary mechanisms to synchronize the Agents and provides accurate one-way
measurements.

This tool includes a built-in traffic generator with the capability of generating constant rates, ramps,
loops and statistical traffic patterns which is something of utmost importance for setting up the
desired environment in terms of varying traffic loads (e.g., for measuring LTE-U impact on Wi-Fi
networks).

Additionally, this tool has the ability to automate some mobile Apps on Android devices and
measuring relevant QoE KPI such as YouTube buffering occurrences.

The summary of measurement capabilities provided to the TRIANGLE Testing Framework is
summarized in Annex 6.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 64/277

The DEKRA Performance Tool has been integrated into the TRIANGLE Testing Framework as
TAP plugin (see section 5.2.135.2.10).

The DEKRA Performance Tool provides to the TRIANGLE Testing Framework the QoS and QoE
measurements which are described in the following sections.

5.2.1 One-way Delay
This packet level measurement is an implementation of RFC 2679. This measurement is written
in C for performance and portability across the range of supported mobile device platforms.

The measurement methodology proceeds as follows:

1. The system arranges that Source DEKRA-Agent and Destination DEKRA-Agent hosts are
synchronized; that is, that they have clocks that are very closely synchronized with each
other and each fairly close to the actual time.

2. At the Source DEKRA-Agent, the system selects Source and Destination IP addresses,
and forms a test packet with these addresses. A test packet uses UDP transport protocol.
The content of the test packet is random. The size of the packet (SDU) is parameter of
the system and the packets inter departure time (i.e., time between consecutive packets)
are parameters of the system.

3. At the Destination DEKRA-Agent, the system arranges to receive the packet.

4. At the Source DEKRA-Agent host, the system places a timestamp (t1) in the prepared
packet and sends it towards the Destination DEKRA-Agent host.

5. If the packet arrives within a reasonable period of time, the system takes a timestamp (t2)
as soon as possible upon the receipt of the packet. Note that the threshold of 'reasonable'
is a parameter of the system.

6. Figure 46 shows in the protocol stack of the DEKRA-Agent hosts where the system
measures the timestamps t1 and t2.

Figure 46 Timestamps for OWD measurements

7. By subtracting the two timestamps, an estimate of one-way delay can be computed for a
give packet ‘i’:

TCP / IP stack

Application

MAC

PHY

TCP / IP stack

Application

MAC

PHY

Packets

t1 (L7 mode)

t1 (L3 mode)

t2 (L7 mode)

t2 (L3 mode)

Source Destination

Measured path (L7 mode)

Measured path (L3 mode)

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 65/277

OWDi = t t (1)

8. If the packet fails to arrive within a reasonable period of time, the one-way delay is taken
to be undefined (informally, infinite).

9. The system groups the OWDi samples into fixed periods of time (dT). The period “dT” is a
parameter of the system. Default value is 1 second.

10. Given OWD [T, dT] = {OWD1, OWD2, …, OWDN} the set of OWDi samples within the
partial interval [T, dT], the system computes the following instantaneous (i.e., per interval)
statistics:

Average OWD T, dT = ∑ OWD (2)

Minimum OWD T, dT = min of OWD T, dT (3)

Xth Percentile OWD T, dT = PCTL OWD T, dT (4)

11. Given OWD [tstart, tend] = {OWD1, OWD2, … OWDM} the set of OWDi samples within the
total measurement interval (tstart, tend), the system computes the following statistics:

Xth Percentile OWD = PCTL OWD t , t (5)

PDF OWD = HISTOGRAM OWD t , t (6)1

Average OWD = ∑ OWD (7)

Table 12 summarizes the One-way Delay KPIs reported by the TRIANGLE Testing Framework
release 1.

Table 12 One-way Delay KPIs

KPI X-Axis Y-Axis Data Source

OWD Average (t) time dT (ms) Average OWD [T, dT] (2)

OWD Minimum (t) time dT (ms) Minimum OWD [T, dT]. (3)

OWD Median (t) time dT (ms) 50th Percentile OWD [d, dT] (4)

OWD Percentile (t) time dT (ms) 0th Percentile OWD [d, dT]

5th Percentile OWD [d, dT]

…

100 th Percentile OWD [d, T]

(4)

OWD CDF % 1% Xth Percentile OWD (5)

1 One OWD PDF plot is calculated for the OWD samples within the total measurement. For example, given
a test 60 s long, where 10000 packets are correctly received, then the system obtains the following vector:
OWD [0, 60] = {OWD1, …., OWD10000} and one PDF histogram is calculated for that vector of 10000 samples.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 66/277

OWD PDF frequency Histogram OWD (6)

5.2.2 One-way Delay Variation (Jitter)
This packet level measurement is an implementation of RFC 3393. This measurement is written
in C for performance and portability across the range of supported platforms.

The methodology proceeds as follows:

1. Repeat steps 1 to 7 from the One-way delay measurement methodology to obtain the
vector of samples OWD.

2. The system computes the IPDV samples as follows:

IPDV = OWD OWD (1)

IPDVi is undefined if either OWDi or OWDi-1 is undefined (packet loss).

3. The system groups the IPDVi samples into fixed periods of time (dT). The period “dT” is a
parameter of the system. Default value is 1 second.

4. Given IPDV [T, dT] = {IPDV1, IPDV2, …, IPDVN} the set of IPDVi samples within the partial
interval [T, dT], the system computes the following instantaneous (i.e., per interval)
statistics:

Average IPDV T, dT = ∑ IPDV (2)

Peak to Peak IPDV T, dT = max of OWD T, dT min of OWD T, dT (3)

Xth Percentile IPDV T, dT = PCTL IPDV T, dT (4)

5. Given IPDV [tstart, tend] = {IPDV1, IPDV2, … IPDVM} the set of IPDVi samples within the total
measurement interval (tstart, tend), the system computes the following statistics:

Xth Percentile IPDV = PCTL IPDV t , t (5)

Average IPDV = ∑ IPDV (6)

Table 13 summarizes the One-way Delay Variation KPIs reported by the TRIANGLE Testing
Framework release 1.

Table 13 One-way Delay Variation KPIs

KPI X-Axis Y-Axis Data Source

IPDV Average (t) time dT (ms) Average IPDV [T, dT] (2)

IPDV Peak to Peak (t) time dT (ms) Peak to Peak IPDV [T, dT]. (3)

IPDV Percentile (t)

time dT (ms)

0th Percentile IPDV [d, dT]

5th Percentile IPDV [d, dT]

…

(4)

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 67/277

100 th Percentile IPDV [d, T]

IPDV CDF % 5% Xth Percentile IPDV (4)

IPDV PDF frequency Histogram IPDV (5)

5.2.3 One-way Packet Loss Rate
This packet level measurement is an implementation of RFC 2680. This measurement is written
in C for performance and portability across the range of supported platforms.

The methodology proceeds as follows:

1. Repeat steps 1 to 4 from the One-way delay measurement.

2. If a packet ‘i’ arrives within a reasonable period of time, the system counts PLi = 0.
Otherwise, if a packet ‘i’ does not arrive within a reasonable period of time, the system
counts PLi = 1. Note that the threshold of 'reasonable' is a parameter of the system.

3. The system groups the PLi samples into fixed periods of time (dT). The period “dT” is a
parameter of the system. Default value is 1 second.

4. Given PL [T, dT] = {PL1, PL2, …, PLN} the set of PLi samples within the partial interval [T,
dT], the system computes the following instantaneous (i.e., per interval) statistics:

PL Rate T, dT = ∑ PL 100 (1)

5. Given PL [tstart, tend] = {PL1, PL2, … PLM} the set of PLi samples within the total
measurement interval (tstart, tend), the system computes the following statistics:

PL Rate = ∑ PL 100 (2)

Table 14 summarizes the One-way Packet Loss Rate KPIs reported by the TRIANGLE Testing
Framework release 1.

Table 14 One-way Packet Loss Rate KPIs

KPI X-Axis Y-Axis Data Source

PL Rate (t) time dT (ms) Average PL [T, dT] (1)

5.2.4 One-way Packet Loss Distribution
This packet level measurement is an implementation of RFC 3357. This measurement is written
in C for performance and portability across the range of supported platforms.

The methodology proceeds as follows:

1. Repeat steps 1 to 3 from the One-way packet loss measurement to obtain the PL vector.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 68/277

2. Given PL [tstart, tend] = {PL1, PL2, … PLM} the set of PLi samples within the total
measurement interval (tstart, tend), the system computes the following:

a. Loss Distance LDi: When a packet is considered lost (PLj= 1), the system looks at
its sequence and compares it with that of the previous lost packet (PLk =1). The
difference j-k is the loss distance between the lost packet and the previous lost
packet,

b. Loss Period LPi: A loss period begins if PLj = 1 and PLj-1 = 0.

c. Noticeable Loss: A packet loss is “noticeable” if LDi is no greater than delta, a
positive integer, where delta is the “loss constraint”.

3. Given PL, LD and LP vectors, the system compute the following:

Noticeable Rate (%) =

 for a given "delta" (1)

Loss Period Lengths = Number of packet lost in each loss period (2)

Inter loss Period Lengths = Distance between consecutive periods loss (3)

Period Loss Duration = Duration of each loss period (4)

Table 15 summarizes the One-way Packet Loss Distribution KPIs reported by the TRIANGLE
Testing Framework release 1.

Table 15 One-way Packet Loss Distribution KPIs

KPI X-Axis Y-Axis Data Source

One-way Loss
Noticeable Rate

Delta Noticeable Rate (%) (1)

One-way Consecutive
Lost Packets

Length Periods Loss Frequency (2)

One-way Consecutive
Lost Packets Distance

Length Inter Periods Loss Frequency (3)

One-way Consecutive
Lost Packets Time (s)

time dT (ms) Period Loss duration (ms) (4)

5.2.5 YouTubeTM
The DEKRA-Agent forces the mobile device to visualize a video from YouTubeTM and measures
the quality of experience of the video streaming.

The implementation of this measurement is driven by the official YouTube API which embeds a
player on the DEKRA-Agent that most closely behaves like the YouTube native application2.

2 At the time this document has been revised.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 69/277

A YouTube session consists of a number of individual YouTube playbacks.

1. DEKRA-Agent loads a full screen Web View component.

2. DEKRA-Agent gets a locally stored HTML test page. This HTML page contains Javascript
code using YouTube iFrame API. It implements all required features for the measurement:

a. It loads a YouTube player.

b. It sets the size of the player to the size of the testing device screen which is
equivalent to a landscape full screen playback.

c. It plays the video clip (e.g., auto play).

d. It captures the user events required to calculate the KPIs (quality changes and
player states).

e. DEKRA-Agent plays the video in the embedded player in the loaded web view.

Table 16 summarizes the KPIs reported by the TRIANGLE Testing Framework release 1 for the
reference App YouTubeTM.

Table 16 YouTubeTM KPIs

KPI Units Description

MOS -
Estimation of the video quality as perceived by a user. Possible
values: 1 (bad) to 5 (good). This estimation is based on the
initial buffering, and the re-buffering index.

Playback Time s

This is the actual duration of the playback from loading the
player until the video clip ends.

Playback Duration = Initial Buffering Time + Total Re-buffering
Time + Other impairments

Other impairments:

- Video lagging due to testing device CPU over load.

- iFrame API accuracy in rebufferings: Elapsed time
from playback pauses until API event calls
onPlayerStateChange ==
PlayerState.BUFFERING

Playback Size MB

The amount of data downloaded by the device to play the video
regardless of the bit rate used. Therefore, the same video clip
may report different video sizes in different test iterations if the
bit rate used has been also different.

Initial buffering s
The period between the starting time of loading a video and the
starting time of playing it.

Re-bufferings -
When the buffered video data decreases to a low value, the
playback will pause, and the player will enter into a re-buffering
state. This KPI shows how many times this event happens.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 70/277

The following KPIs are derived from all the re-bufferings in a
video playback:

- Maximum re-buffering time (s)
- Average re-buffering time (s)
- Total re-buffering time (s)
- Re-buffering Index

Re-buffering duration is calculated on by capturing the
Jasvascript events onPlayerStateChange ==
PlayerState.BUFFERING and
onPlayerStateChange == PlayerState.PLAYING.

The Re-buffering Index is computed from the number of re-
buferings, the re-bufferings duration and the video’s length.
Possible values: 0 (good) to infinite (bad).

Video Quality
Distribution

-

The playback quality of the video.

The following KPIs are derived from a video playback:

- First / Last Video Quality
- % of Time in each Quality (histogram)
- Most Used Video Quality

- Average Video Quality3

Playtime s

Over time representation of the video playback.

X-Axis: Actual Time

Y-Axis: Playback time

5.2.6 SpotifyTM
The DEKRA-Agent forces the mobile device to reproduce an audio track from SpotifyTM and
measures the quality of experience of the audio streaming.

1. DEKRA-Agent uses Spotify API to start a music track

2. DEKRA-Agent sets the playback rate with this API function:

public voidsetPlaybackBitrate

Spotify API: “Set the bitrate of the player to specified value. This will take effect for the next
chunk of audio that is streamed from the backend. The format or sample rate of the audio
data does not change”

3. Whenever the player state changes, the DEKRA-Agent captures the event calls: PLAY,
TRACK END, etc.

4. Then, while the music track is playing on the device, the DEKRA-Agent captures the
following event calls to measure the KPIs:

int onAudioDataDelivered

Spotify API: “Called whenever the player receives audio data. The method is synchronous
and therefore blocking“

3 Average Video Quality = (% time in 120p * 120 + % time in 240p ... + % time in 4k * 4k) /100.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 71/277

5. Based on the API event calls presented above, the DEKRA-Agent calculates the following
KPIs:

a. Initial Buffering (s): First onAudioDataDelivered event - PLAY

i. If either of the events is not captured, the KPI is reported as null (absence
of measurement).

b. Number of Re-bufferings:

i. Let T be the time between consecutive onAudioDataDelivered events.
DEKRA-Agent counts a re-buffering observation whenever T is longer than
200 ms. Thus, Re-buffering Time is given by T – 40 ms.

c. Total Re-buffering Time (s): Sum of (Re-buffering Time observations)

d. Playback Duration (s): TRACK END – PLAY.

e. Re-buffering Index: Total Rebuffering Time / (TRACK END - First
onAudioDataDelivered event).

Table 17 summarizes the KPIs reported by the TRIANGLE Testing Framework release 1 for the
reference App SpotifyTM.

Table 17 SpotifyTM KPIs

KPI Units Description

Initial buffering s
The period between the starting time of loading the audio track
and the starting time of playing it.

Re-bufferings -

When the buffered audio data decreases to a low value, the
playback will pause, and the player will enter into a re-buffering
state. This KPI shows how many times this event happens.

The following KPIs are derived from all the re-bufferings in a
audio playback:

Maximum re-buffering time (s)

Average re-buffering time (s)

Total re-buffering time (s)

Track Size MB
The amount of data downloaded by the device to play the audio
regardless of the bit rate used.

Re-buffering index -
This KPI is computed from the number of re-buferings, the re-
bufferings duration and the audio’s length. Possible values: 0
(good) to infinite (bad).

MOS -
Estimation of the audio quality as perceived by a user. Possible
values: 1 (bad) to 5 (good). This estimation is based on the
initial buffering, and the re-buffering index.

Playback Duration s
This is the actual duration of the playback from loading the
player until the audio track ends.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 72/277

5.2.7 FacebookTM
The DEKRA-Agent forces the mobile device to perform Facebook operations and measures the
quality of experience.

This measurement uses the Android Facebook API and uses Facebook test accounts which must
be created by the user only once before running the first test on that device.

Table 18 summarizes the KPIs reported by the TRIANGLE Testing Framework release 1 for the
reference App FacebookTM.

Table 18 FacebookTM KPIs

KPI Units Description

Time to post a
comment

s
Elapsed time since users click "post a comment" and the
comment is posted in their Facebook account.

Time to post a image s
Elapsed time since users click "post an image" and the
comment is posted in their Facebook account.

Time to post a video s
Elapsed time since users click "post a video" and the comment
is posted in their Facebook account.

Operations
successful rate

% Percentage of operations successfully completed.

5.2.8 Web Browsing
The DEKRA-Agent forces the mobile device to download a web page from a destination web server
(target IP server) for each test measurement.

A Web browsing session consists of a number of individual web page downloads. The following
figure shows a Web Browsing iteration identifying the Setup and Session Time.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 73/277

Figure 47 Web Browsing measurements

Table 19 summarizes the KPIs reported by the TRIANGLE Testing Framework release 1 for the
reference App Web Browser.

Table 19 Web Browsing KPIs

KPI Units Description

Setup time s
Time period needed to access the web page, from user entering
the URL and hitting “Return”, to the point of time to receive the
first byte of the web page

Session time s
Time period needed to successfully complete the data transfer,
from user entering the URL and hitting “Return”, to the point of
time to receive the last byte of the web page

Mean data rate Mbit/s
The average data transfer rate measured throughout the entire
connect time to the service. The data transfer shall be
successfully terminated

5.2.9 File Transfer
The DEKRA-Agent forces the mobile device to transfer (download or upload) a data file from a
destination file storage server (target IP server) for each test measurement.

In both the download and upload modes the test uses a single TCP connection to perform the
transfer.

Table 20 summarizes the KPIs reported by the TRIANGLE Testing Framework release 1 for the
reference App File Transfer.

Client (System) Server

DNS lookup

Open TCP

HTTP GET

Setup
Time

Page download

Session
Time

DNS Response Time

Web-server Response Time

Transmission Time

Page rendering

Time Time

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 74/277

Table 20 File Transfer KPIs

KPI Units Description

Setup time s
Time period needed to access the data service, from user
entering the URL and hitting “Return”, to the point of time to
receive the first byte of the file

Session time s
Time period needed to successfully complete the data transfer,
from the point of time to receive the first byte of the data file, to
the point of time to receive the last byte

Mean data rate Mbit/s
The average data transfer rate measured throughout the entire
data file transfer. The data transfer shall be successfully
terminated

5.2.10 WLAN Access Point Automation
In the scope of Task 3.6 Integration with the underlying infrastructure, DEKRA has developed a
module to facilitate the integration of Wi-Fi access points in the TRIANGLE testbed.

Table 21 shows the list of commands available in the TRIANGLE testing framework.

Table 21 WLAN AP commands available in TRIANGLE

Name Possible values

Set Channel Width {20, 40, 80, 20_40, 20_40_80}

Set Channel Numer Any valid channel number

Turn On/Off Turn on/off Wi-Fi radio

Set Transmit Level {0, 100} %

The module developed by DEKRA uses Telnet to control the WLAN Access Point. Then, it is
suitable for automating any WLAN Access Point provided that it exposes a Telnet interface.

The implementation consists in a parser of a descriptor file which contains the list of Telnet
commands in human readable language for a specific WLAN Access Point model. This way if
another WLAN Access Point used different command set, the module would be still valid and only
updating the descriptor file would be needed.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 75/277

Figure 48 TRIANGLE WLAN AP Automation

The descriptor file for the WLAN Access Point used for the validation of this module is shown
below:

<?xml version="1.0" encoding="utf-8"?>

<Commands>

 <WidthCommandParam>

 <20>0x1</20> <!--Channel width 20 MHz-->

 <20_40>0x3</20_40> <!--Channel width 20/40 MHz-->

 <20_40_80>0x7</20_40_80> <!--Channel width 20/40/80 MHz-->

 </WidthCommandParam>

 <SetChannel>

 <Description>Specifies a channel number</Description>

 <Op>admin</Op> <!--Your AP username-->

 <Op>12345</Op> <!--Your AP password-->

 <Op>wl -i eth1 radio off</Op>

 <Op>wl -i eth1 channel CHANNEL</Op>

 <Op>wl -i eth1 radio on</Op>

 <Op>exit</Op>

 </SetChannel>

 <TurnOn>

 <Description>Turn radio On</Description>

 <Op>admin</Op> <!--Your AP username-->

 <Op>12345</Op> <!--Your AP password-->

 <Op>wl -i eth1 radio on</Op>

 <Op>exit</Op>

 </TurnOn>

 <TurnOff>

 <Description>Turn radio Off</Description>

 <Op>admin</Op> <!--Your AP username-->

Descriptor
Parser

WLAN AP
Command Set
Descriptor for a
given AP model

Telnet Client

WLAN AP Automation module in TRIANGLE R’4

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 76/277

 <Op>12345</Op> <!--Your AP password-->

 <Op>wl -i eth1 radio off</Op>

 <Op>exit</Op>

 </TurnOff>

 <TransmitLevel>

 <Description>Specifies the transmit power level for the current
operating radio channel on the access point (%)</Description>

 <Op>admin</Op> <!--Your AP username-->

 <Op>12345</Op> <!--Your AP password-->

 <Op>wl -i eth1 pwr_percent POWER</Op>

 <Op>exit</Op>

 </TransmitLevel>

</Commands>

For the validation of the WLAN AP automation module, we have used the configuration of the
TRIANGLE testbed which uses the LWIP feature. Table 22 summarizes the scenarios which has
been conducted in the preparation of this deliverable. In all scenarios, there was an LTE link up
and transmitting data throughout the entire test whereas the WLAN configuration was varied by
using the implemented WLAN AP automation module. The imposed traffic load was 200 Mbit/s
between the laptop client and a data endpoint on the EPC computer.

Table 22 WLAN Access Point automation and LWIP scenarios

Name Test steps

Test 1 WLAN On, WLAN Off, WLAN ON

Test 2 WLAN TX Power: 1, 10, 25, 50, 100

Test 3 Channel 1, Channel 11

The test setup used for the validation of the WLAN AP automation feature with LWIP is shown in
the Figure 49 .

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 77/277

Figure 49 TRIANGLE configuration for WLAN AP automation feature validation

Annex 7 presents the more relevant results obtained during the validation of the WLAN AP
automation feature on the LWIP based TRIANGLE testbed configuration.

5.2.11 Virtual Reality Application Testing Capability
The goal of VR applications is to emulate a natural and fluid interaction between the user and a
virtual world, which will demand network resources. How far from natural and fluidity will determine
the quality of experience perceived by VR users

The solution implemented supports testing VR apps on Android and iOS devices. Details available
in section 11.2.

Annex 8 provides details of the implementation of the Remote-Control Interface service. That
specification provides a complete view of the measurement capabilities available in Release 3 of
the TRIANGLE testbed.

5.2.12 Other Features
In the scope of DRA test specification [D2.2_AP6], Content Distribution Streaming Reference App
use case and more specifically Content Stall KPI, reporting the percentile curve (a.k.a CDF) as
KPI summarization was specified for the TRIANGLE Mark scoring. The ability to collect the
measurements for Content Stall KPI resides in the DEKRA Performance Tool component. In
Release 2, even though the DEKRA Tool internally measured every Content Stall instance and its
duration, only average and maximum values were exposed to the TRIANGLE testbed. In Release
3, all the Content Stall instances as measured by the DEKRA Tool are now exposed and made
available to the testbed so that the ETL component can compute the required KPI summarization
(i.e., percentile curve) which is necessary to provide support for the TRIANGLE mark scoring
process.

In the scope of RES test specification [D2.2 AP5], reporting the device GPU usage was specified.
In Release 3 the DEKRA Performance Tool is able to collect GPU Usage from Android devices.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 78/277

That new measurement capability has been integrated into the TRIANGLE test bed thus
completing the full coverage of the RES tests specification.

The device interface that the DEKRA Tool uses for reading the GPU load is "/sys/class/kgsl/kgsl-
3d0/gpubusy", which reports the total and busy cycles DEKRA Tool uses to calculate the GPU
usage: /sys/class/kgsl/kgsl-3d0/gpubusy reports two integers g0and g1. The actual load as
a percentage can be calculated as (g0/g1*100).

5.2.13 DEKRA TAP plugin
This section describes the implementation of the TAP plugin for the integration of the DEKRA
Performance Tool in the TRIANGLE testbed.

DEKRA Performance Tool Interface

The plugin implementation relies on the interface exposed by the tool, the Remote Control (RC)
Sever. The TAP plugin is therefore an implementation of a RC Client.

The RC Server can be accessed with the following parameters:

Table 23 DEKRA Tool RC Server channel

Item Setting

LAN IP Address IP address of the Performance Tool

Protocol TCP

Port 11500

End of Sentence ‘\n’ (line feed)

The RC Client (i.e., the TAP plugin) shall open a connection to that service and send commands.
All commands imply a response from the RC Server that the RC User shall read right after sending
the command.

Instrument

Table 24 shows the operations implemented for TAP Instrument management.

Table 24 DEKRA Tool TAP Instrument

Operation Description

Open Creates the socket with the DEKRA Tool RC Server

Close Closes the socket with the DEKRA Tool RC Server

Settings
DEKRA Tool RC Server settings: IP address, port, operation mode, and
project/session name

End of Sentence ‘\n’ (line feed)

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 79/277

Figure 50 DEKRA Tool TAP Instrument

DUT (TACS4-Agent)

Table 25 shows the operations implemented for TAP DUT management.

Table 25 DEKRA Tool TAP DUT

Operation Description

Definition
Defines the Agents which participate in the test. Adding a DUT does not necessarily
implies its usage.

Configuration Defines the configuration of the TACS4-Agent: IP address, Port, etc.

Open/Close
There is no method for open/close. TAP by default initiates the DUT before the
Instrument.

Add Agent

This is the step which adds and configure a Agent to the configuration of the RC
Server. The only parameter of this operation is the DUT itself. The step reads all in
the information stored in the TAP DUT and builds the RC Server configuration
commands.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 80/277

Figure 51 DEKRA Tool TAP DUT

Test Step

Table 26 shows the operations implemented for TAP Test Steps management.

Table 26 DEKRA Tool TAP Test Steps

Operation Description

Configuration

The configuration of the test steps is similar in all the tests except for the input
parameters. For example, below is the input parameters for YouTube;

 Video Id

 Timeout

Execution

The test steps have basically three methods and a constructor.

The constructor initializes the input parameters with default values.

The methods pre-plan and post-plan are used to do operation before and after start
the test plan. These methods are not used in this plugin.

The method “run” is used to execute the test step itself. This methods implements
the configuration of the test based on the actual input parameters.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 81/277

Figure 52 DEKRA Tool TAP Test Step (YouTube test)

Run/Stop Test

Both Run and Stop Test steps have one single input parameter the TAP Instrument itself.

Figure 53 DEKRA Tool TAP Run/Stop Test

The step Test Run is blocking and block the TAP Tets Plan until the step finishes.

Get Results

The DEKRA TAP plugin reports the measurements with one second resolution. This feature is
available because the RC server implements a function called “Get Vector”.

Additionally, the DEKRA TAP Plugin also reports the system measurements collected from the
test phone (e.g., CPU usage, battery status) with one second resolution as well.

Table 27 shows an extract of the RC server specification which has been used to implement the
DEKRA TAP plugin get results procedures.

Table 27 DEKRA Tool RC Server Get Results

Operation Description

Get <x> Vector

This function returns the list of pairs (timestamp, <x>) as measured throughout the
test session, where <x> is the type of measurement: Thorughput, One way delay,
pachet loss, or jitter.

Example:

RESULT:OWDGETVECTOR 2016-05-02 16h 20m 10s,
MyUDPFLOW,averaged

 OK: 0.067,42.123,1.069,42.325,2.071,45.322,3.075,46.123

Get RASM Vector

This function returns the list of pairs (timestamp, phone parameter) as measured
throughout the test session.

Example (fro WLAN RSSI):

RESULT:RASMGETVECTOR 2016-05-02 16h 20m 10s, Agent1, wlan.rssi

OK: 0.067,-42,1.069,-42,2.071,-45,3.075,-46

Get YOUTUBE
Returns the YouTube KPIs from a specific Agent. Possible KPIs:

Possible values:

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 82/277

 ib:Initial buffering in seconds

 rb_index: Re-buffering index (0-inf)

 rb_avg: Average re-buffering time (s)
 rb_max: Maximum re-buffering time (s)

 rb_total: Total re-buffering time (s)

 rb_number: Number of re-bufferings

 size: Playback size in MB

 MOS: MOS (1-5)

 duration: Playback duration in seconds
 thoughput: Average throughput in Mbit/s

 vq_first: First video quality

 vq_ last: Last video quality

 vq_mode: Most used video quality

 vq_avg: Average video quality
 vq_144: % time in 144p

 vq_240: % time in 240p

 vq_360: % time in 360p

 vq_480: % time in 480p

 vq_720: % time in 720p
 vq_1080: % time in 1080p

 vq_2k: % time in 1440p

 vq_4k: % time in 2160p

Example:

RESULT: YOUTUBEGETKPI 2016-05-02 16h 20m 10s, Agent1,MyYou,1,ib

OK: 1.123,2.123,,3.245

Error Handling

All the commands implemented in the DEKRA Tool RC Server handle the error cases and return
error code and message. These codes and messages are transparently propagated up to the TAP
GUI via the DEKRA TAP Plugin. The DEKRA TAP plugin does not implement any additional error
handling. It just forwards the error coming up from the RC Server.

FAIL is reported whenever the error does not prevent the execution of the TAP test plan. ERROR
is whenever the error prevents the execution of the TAP test plan (e.g., the DEKRA is unable to
connect to the Agent running on the test phone).

5.3 Power Analyzer
The Keysight N6705B DC power analyzer 4-slot mainframe holds up to 600 W of total power. The
N6705B is a highly integrated instrument that combines up to four advanced DC power supplies,
digital multi-meter (DMM), oscilloscope, arbitrary waveform generator and data logger. It provides
an interface, with all sourcing and measuring functions available from the front panel. In addition,
the instrument can be remotely controlled. The aforementioned power analyzer is able to measure
the current going into the UE. We extened the capabilities of the device to support IEEE 1588 for

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 83/277

time synchronization between the eNodeB emulator and the power analyzer. This section provides
a brief overview of the capabilities of the power analyzer. For a more exhaustive view of the
commands the reader is referred to the user manual [47].

Figure 54 Keysight N6705B DC Power Analyzer

5.3.1 Voltmeter/Ammeter: Meter View
Each DC power module in the Keysight N6705 DC power analyzer has a fully integrated voltmeter
and amperimeter to measure the actual voltage and current being sourced out of the DC output
into the UE.

Figure 55 Meter View; all 4 outputs can be viewed simultaneously

5.3.2 Oscilloscope: Scope View
Each DC power module in the Keysight N6705 DC power analyzer has a fully integrated digitizer
to capture the actual voltage-versus-time and current-versus-time being sourced from the DC
output into the UEDUT. The digitized data appears on the large colour display just like an
Oscilloscope.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 84/277

Figure 56 Scope View; voltage and current traces are displayed

5.3.3 Data Logger View
The Keysight N6705 DC power analyzer can also function as a data logger. Using the
measurement capability built into each DC power module, the N6705 can continuously log data to
the large colour display and to a file. Data can be simultaneously logged on all four DC outputs.

The following table summarizes the data logging specifications:

Table 28 N6705 DC power analyzer data logging specifications

 Standard data logging Continuous data logging

Sample interval range 75 milliseconds to

60 seconds

20* μs to 60 s

*Add 20 µs for each additional
parameter (Voltage, Current,
Min, or Max)

Sample rate 50 kHz 50 kHz

5.3.4 Control and Analysis Software
The software for the DC power analyzer complements the front panel of the N6705B mainframe,
offering advanced functionality and PC control as shown in Figure 57. One showcase application
is battery drain analysis for IoT devices.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 85/277

Figure 57 Control and Analysis Software for N6705B Screenshot

5.4 Apps Instrumentation
The TRIANGLE testbed provides several means for extracting information needed to calculate
KPIs in apps. Some KPIs can be calculated by measuring the time between two UI events or
actions, e.g. the presence of a specific element in the screen, or when a certain user action is
performed in the context of an app user flow.

However, to compute KPIs associated to internals actions in the apps, the apps have to be
"instrumented" to provide the required information. This app instrumentation must be done by the
App developer before submitting the app to the TRIANGLE testbed for testing. This app
instrumentation must be both easy to use and lightweight enough, to avoid interfering with the
measurements.

The Application Instrumentation Library (Instrumentation Library or just Library for short) is a library
provided by the TRIANGLE project to app developers, in order to facilitate how to extract
measurements from inside their applications. The measurements performed through the
Instrumentation Library are stored along other measurements gathered during a test case
execution. This Library provides the necessary measurement points for running the test
specifications defined within the TRIANGLE project, and computing the corresponding KPIs and
metrics. In addition, the Library allows app developers to log additional measurements outside of
the ones defined within the project, and store them with the rest of the measurements. The
measurements that app developers will be able to get from the Portal will include both “custom”
and “standard” measurements. This library is available only for Android applications. The same
library can also be used in Unity applications for Android. Some parts are written in a generic
manner, to be applicable to other future library implementations. This section describes the Library
contents, and how to use it inside an application. It also describes the current internal format of the
messages produced by the Library, although this information is internal and subject to change.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 86/277

5.4.1 Instrumentation Library for Android
For Android apps, measurements are written to the system-wide log, called logcat [6]. All apps
running in an Android device can write to this log, and the messages are timestamped on the
device. The contents of the logcat can be retrieved online, e.g. while the Android device is
connected to a computer through USB, or offline. Messages can be filtered by their tag (set by the
app that sends them) and priority (e.g. verbose, info, warning and error).

To univocally identify the data that is being written as part of the data required for a certain KPI,
the app will write to the log with a very specific tag and message format. This enables filtering and
parsing the required data from the testbed.

TRIANGLE provides a library that app developers can use to indicate the measurement points
inside the application. The measurements collected at these points are used to calculate the KPIs.
This library takes care of giving the proper tag and format to the log messages, with a developer
friendly interface. This library is optimized for speed and memory, e.g. object allocation is
minimized by using static methods and objects whenever possible.

The library provides a set of abstract classes in the TRIANGLE portal
(eu.TRIANGLE_project.instrumentation.kpis) package, which enables app developers to provide
measurements. To make their intended usage clearer for app developers, the measurements have
been grouped into classes, and organized into sub-packages, according to the KPIs which require
them. The measurements required by a KPI are represented by a single abstract class. A KPI
typically requires more than one measurement, which we call KPI measurement points in
TRIANGLE. Each class provides static methods that must be called by the developer to provide
data for a specific measurement point. These methods can take zero or more parameters,
depending on what data must be provided for each measurement point. A method with no
parameters can also output useful information, such as the presence of an event and its timestamp.

For instance, a KPI that involves measuring the time to download content from the app servers
would be supported by a DownloadContentTime abstract class. This KPI may have three
measurement points: the content size, and time when the download started and finished.
Therefore, this class provides three methods to provide this information, which the developer has
to call from the app code when the appropriate condition is met. In addition, there are overloaded
versions of the methods that indicate the start or end of the download, with an additional timestamp
parameter. If no timestamp is given, it is calculated when the method is called. The explicit version
is useful if the developer must obtain the required timestamp from a particular source.

Figure 58 shows how the KPI classes are organized for the user experience KPIs that were
identified in deliverable D2.1, section 5.1.4. The KPIs for each of the app categories are contained
in separate packages, with a “shared” package containing KPI classes that can be applied to more
than one category.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 87/277

Figure 58 Overview of organization of instrumentation classes for a subset of KPIs

The KPIs themselves belong to a particular app feature, e.g. “login” or “post picture”. The
measurements also belong to these features, and can be used in one or more KPIs for that feature.
Finally, the features are grouped by the use case to which they belong, e.g. “live streaming
services” or “social networking”. Each measurement may have zero or more arguments that must
be filled in by the user. These arguments can be of any of the four following types:

 Boolean

 Integer

 Floating point

 String

TRIANGLE has defined a set of “standard measurements”, which are used to compute the KPIs
defined for the TRIANGLE test cases. The package/class hierarchy of the instrumentation library
provides a clear path to the appropriate measurement, so that it is possible to find the appropriate
method/function to call easily. The general structure is:

 Use cases

o Features

 Measurements

Additionally, the library provides means to app developers to include additional measurements,
called “custom measurements”. These measurements are parsed and stored alongside the rest of
the measurements, but they are not included as part of any standard KPI computation. To
distinguish them from regular measurements, all these measurements are organized into a special
use case called “Custom”. When logging a custom measurement, the Library user can define to
which feature and measurement it belongs. This affects the classification of the measurements,
when stored in the measurements database. In addition, the user can provide zero or one
arguments for a custom measurement

Annex 3 provides a list of all the measurements supported by the Instrumentation Library.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 88/277

5.4.2 TAP Support for Instrumentation Library
A TAP plugin has been designed to extract measurement data written by the Instrumentation
Library, and make it available as a result. Together with the OML (See Section 5.5) plugin for TAP,
this enables cross referencing KPI data from the instrumentation with data from other tools, in the
same OML database.

Table 29 shows the instruments provided by the TAP plugin. A generic IDutLogParserInstrument
interface defines common methods to extract measurement data from DUT logs.

Table 29 Measurement parsing TAP plugin instruments

Instrument Setting Description

(IDutLogParser-
Instrument)

Interface that must be implemented by instruments
that support parsing measurement data from the log
of a DUT.

Logcat Parser

(LogcarParser-
Instrument)

Instrument that implements IDutLogParser for
parsing measurements from Android’s logcat.

 ADB / ADB path
Path to the ADB executable in the local file system
that will be used to interact with the logcat.

Table 30 shows the main test steps provided by the TAP plugin. The two main steps are setting
up which measurements will be parsed, and performing the actual parsing. By default, all
measurements will be monitored, but the subset that is required for a particular KPI can be
selected. The ParseDutLogStep performs the actual log parsing for the previously configured
measurements.

Table 30 Measurement parsing TAP plugin test steps

Test step Setting Description

Setup measurement
parsing

(MeasurementPasrsing-
SetupStep)

Select which measurements will be parsed from the
log of a DUT, through an IDutLogParserInstrument.

DUT / DUT log
parser

Select the IDutLogParserInstrument that will be used
to parse the DUT log.

 DUT / Device ID ID of the device whose log will be parsed.

Measurements /
Parse all

If enabled, the test step will try to detect and parse all
possible measurements that can be generated by the
instrumentation library.

If disabled, select a KPI whose measurement points
will be parsed in the next setting.

Measurements /
KPI

Select a KPI whose measurement points will be
parsed.

Parse DUT log

(ParseDutLogStep)

Perform the actual parsing of the log of a DUT, to
extract the previously configured measurements.

DUT / DUT log
parser

Select the IDutLogParserInstrument that will be used
to parse the DUT log.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 89/277

 Action / Action

Possible values: Activate, Deactivate, Single Shot.

If Single Shot is selected, the current contents of the
log will be examined to parse the measurements.

The other two values can be used to start log parsing
in the background, so that other test steps can be
executed in between.

Setup Logcat regex
parsing

(LogcatRegexParsing-
SetupStep)

Configures a custom measurement parsing rule that
can be used to extract data from logcat with a custom
format not part of the standard measurement points.

DUT / Logcat
parser

LogcatParserInstrument that will be used to parse the
custom measurements.

 DUT / Device ID ID of the device whose log will be parsed

 Result / Name
Name of the result that will be published when a
match is found.

 Logcat filter / Tag
Filter the contents of the logcat so that only
messages with the given tag are considered.

Logcat filter /
Priority

Filter the contents of the logcat so that only
messages with the given priority (e.g. verbose, info,
error) are considered.

 Regex / Regex

The regular expression (regex) that will try to be
matched in the filtered logcat messages. This regex
may have a capturing groups. When a message
matches the regex, the values of these capturing
groups will be published as results, with the names
configured below.

Regex / Result
names

Comma separated list of result names to be given to
the value from each capture group in a regex match.

Specific steps to perform ad-hoc parsing will be considered. LogcatRegexParsingSetupStep
allows the user to parse messages that match a given regular expression. The capture groups of
the match will be published as results of the test step, with the names given in the step settings.

5.4.3 Measurement Calculation without Instrumentation Library
In case it is not possible to use the Instrumentation Library on your application (for example,
because it has been developed using the Android NDK or it is not possible to include external
libraries), app developers can still instrumentalize their applications and take advantage of the
automatic measurement calculation provided by the TRIANGLE testbed. This is possible by writing
messages that follow the same format as the messages generated by the instrumentation library,
and generating them at the same situations in which a method from the library would be included.

For example, the following snippet could be used for generating the required measurement point
at the end of an FTP download in an Android NDK application:

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 90/277

Figure 59 Snippet for generating measurement points with the same format that the
instrumentation library

Where “\t” corresponds to the Tab character. The message that corresponds to each of the
supported measurement points can be seen on the 'Measurement point methods’ section on the
documentation of the specific Instrumentation Library for each operating system, as “Generated
message”.

5.5 OMF Measurement Library (OML)
All the control and measurement tools used during a test may generate significant amounts of data
and results. This data is useful for aggregating different measurements and events, and measuring
KPIs that span across tools. The TRIANGLE testbed uses the OML measurement framework [7]
to centralize the collection of measurements and other data generated during the test.

5.5.1 OML Architecture
OML follows a client-server architecture, where several OML clients collect measurements and
sends them to one or more OML servers using a custom OML protocol. OML clients can use one
of the existing client libraries for several programming languages, instead of doing their own
protocol implementation.

The measurements from an OML client are grouped into measurements points. Data from each
measurement point can be filtered at the client, to perform some processing before forwarding the
measurements.

In the TRIANGLE testbed, all measurements are sent to a central OML server which collects and
stores them. This OML server uses a PostgreSQL database server as a backend to store the
measurements, not related to the database managed by TAP. The OML server stores the data
from each test in a separate database, in the same PostgreSQL database server. Before starting
a test, OML clients must be configured with the same test ID, so that the OML server stores all
their measurements in the same database.

The data from each measurement point is stored in a separate table in the database. Measurement
points produce data as key-value pairs. The measurement point table will contain one column per
each key used in the measurements, plus additional metadata, such as the ID of the client, and
timestamps at both the client and the server. Each measurement sent by the client will be stored
in a row on the corresponding table. The same measurement point ID can be used by more than
one OML client. The measurements sent from the two clients will be stored on the same table, but

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 91/277

they can be distinguished by the client ID stored on each row. Two other tables will be created with
additional metadata per test.

Figure 60 shows the high-level architecture of the OML framework with an example. Two OML
clients are sending measurements to a single OML server. The measurements from one client are
grouped into two separate measurement points (MPA and MPB). All the measurements can be
filtered before they are actually sent to the OML server. The measurements from each test will be
stored in a separate database, in the same PostgreSQL database server.

Figure 60 OML architecture

Figure 61 show an example database created by the OML server in the PostgreSQL database
server for storing measurements from a test. This test contains a single measurement point, called
csv2oml_csv_app_mp, whose measurements are stored in a table of the same name. The first
five columns of that table store metadata associated with each measurement, while the other four
store the actual values of each measurement. All the measurements have been written by the
same client, whose ID is shown in the oml_sender_id column.

Figure 61 OML database for an experiment with a single measurement point

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 92/277

OML also provides utilities to share data collected by tools that do not implement OML functionality.
The csv2oml command line tool sends the contents of a CSV file to an OML server, using the
headers of each column as the name of each measurement component.

5.5.2 TAP Support for OML
OML measurements have to be configured and performed as part of a TAP test plan that performs
a test. This section describes the design for a TAP plugin to support OML measurements in TAP.
This plugin includes several test steps and instruments, as usual.

Table 31 shows the instrument provided by the TAP plugin. This instrument handles the connection
to an OML server, and thus the user needs to provide the host and port where that server is
running. The server keeps track of the test ID, so that the measurements collected during the
execution of a TAP test plan are stored in the same database. It also shows an interface that has
been defined for new instruments: ICsvInstrument, Instruments that implement this interface
declare that they produce a CSV file as a result of their normal operation. The interface declares
only one property, with the path to the CSV file that will be generated.

Table 31 OML TAP plugin instruments

Instrument Setting Description

OML Server

(OmlServerInstrument)

Handles connection to OML server. Keeps track of the
test ID, so that measurements are stored on the same
database.

 Server / Host Host name or IP of OML server.

 Server / Port Port of OML server.

(ICsvInstrument)
Interface for new TAP instruments that provide CSV
files. Instruments that implement it,

Table 32 shows the two test steps provided in the TAP plugin. OmlSetupStep performs basic OML
configuration. SendCsvStep sends the rows of a CSV file as individual measurements to the OML
server. This file can be one found on the local file system, or one provided by an instrument that
implements the ICsvInterface. This step is helpful to add support for tools that generate CSV files
as results, without having to implement a full TAP plugin.

Table 32 OML TAP plugin test steps

Test step Setting Description

OML Setup

(OmlSetupStep)

Performs initial setup for the OML measurement
collection.

 OML / Server OmlServerInstrument which will be set up.

Test / Custom
name

If enabled, the user can set a custom name for the
new test, which will be the name of the database
where measurements will be stored.

If disabled, a unique test name will be automatically
generated.

Send CSV to OML Sends the contents of a CSV file to an OML server.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 93/277

(SendCsvStep)

 OML / Server
OmlServerInstrument to which measurements will be
sent.

 CSV / Source

Selection between: File, Instrument.

Select the source of the CSV file: a file in the file
system, or a CSV generated from a compatible
ICsvInstrument.

 CSV / File path
Path to a CSV file in the file system, whose contents
will be sent to the OML server.

 CSV / Instrument
An ICsvInstrument that will provide the CSV file that
will be sent to the OML server.

CSV / Has
Headers

If true, the first line of the CSV file will be interpreted
as a header. The values of this header will be used as
the names for each column.

If false, column names will be assigned automatically.

Measurements /
Measurement
point

Name of the measurement point defined for this CSV
file.

The plugin also provides a TAP result listener that sends the results published by TAP test steps
to an OML server, as shown in Table 33. A result listener is the best option for publishing results
from plugins which follow TAP conventions and publish results through the TAP API.

Table 33 OML TAP plugin result listeners

Result listener Setting Description

OML Result Listener

(OmlResultListener)

Result listener that sends the results received from
TAP test steps to an OML server. The name of the
ResultTable published by a test step will be used as
the measurement point name.

 OML / Server
OmlServerInstrument to which measurements will be
sent.

Figure 62 shows the main classes which compose the implementation of the TAP plugin for OML.
Only one instrument has been defined, OmlServerInstrument, to represent the connection to a
particular OML server. This instrument holds the name of the test, which is used to identify the
database where all measurements of a TAP test plan execution are sent to.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 94/277

Figure 62 Main classes of TAP plugin for OML

Figure 63 shows an example of a TAP test plan using the test steps and instruments included in
the OML TAP plugin. The test plan uses an OmlServerInstrument, which collects measurements,
and two instruments that implement the ICsvInstrument interface. The first step is to configure the
name of the OML test, which is followed by the steps that make use of both ICsvInstruments. It
finalizes with two test steps that send the CSV files generated by both instruments. The Instrument
selector allows the user to select only those instruments that implement the required interface.

Figure 63 Example of TAP using OML TAP plugin

5.6 KPIs Computation
The measurements stored in the OML database serve as the source material for extracting and
computing the KPI values. A specialized ETL (Extract, Transform, Load) performs this task.

Each test is executed to measure enough data to compute a set of KPIs. Therefore, the ETL tool
needs as input which of the KPIs defined for the TRIANGLE Testing Framework can be computed
from the experiment or test. This information was produced by the Orcomposutor, along with each

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 95/277

of the test plans it generated. The computed KPIs are stored in a database different from the OML
database.

For experimentation campaigns, the main body of the workflow ends here. The computed KPIs will
be available for the user in the Portal, along with the raw measurements.

A generic data management framework (TRIANGLEKpi.Core) provides the basic functionality
required for the generation of the KPIs based on the raw data obtained during the testplan
execution.

A set of TAP steps (grouped on the ‘Tap.Plugins.TRIANGLEKpi’ plugin) makes use of the core
package for calculating the different KPIs defined for each of the available domains.

5.6.1 Tap.Plugins.TRIANGLEKpi
The TRIANGLEKpi TAP plugin contains a set of test steps that can be used for generating the set
of KPIs defined for each domain, using the results generated by the previous campaign execution
as source. This plugin also defines an additional Loader based on the interface defined on the
Core package: TapDataLoader can generate the initial StructuredData for the Pipelines by
querying a set of data from the TAP’s result database.

Prior to the execution of the KPI extraction steps the results generated by a testplan execution by
using the ‘Test Case Labeler’ step must be labeled. This step is executed at the beginning of each
campaign run and provides the basic information that TapDataLoader requires for loading the
desired results.

Figure 64 Configuration parameters on the Test Case Labeller step

Each step exposes a similar set of configuration parameters:

- The basic settings include the Test Case id and network scenario of the testplan.

- The Test Case, Campaign and Test Plan sections can be used to define associated
metadata for the generated KPIs.

- The Input / Output section defines the input database and optional ETL database: The
steps can save the generated KPIs and metadata directly into an ETL database, or only as
standard TAP results.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 96/277

-
Figure 65 Configuration parameters on the RES step. All steps include the same basic settings.

Other features developed to support post–processing measurements into atomic KPIs for new
domains are depicted in the following sections.

Application User Experience (AUE)

The AUE domain part of the TriangleKPI plugin processes all user-experience measurements as
described in the test specifications. It calculates the respective KPIs using multiple Processors, for
example Mode (for Video Resolution measurements), Average (for Time to Load the first Media
Frame) or CutOff Radio.

The test step notably calculates KPIs based on the resolution used by the application (for example,
during video playback or gaming). In these cases, the calculation is performed using 4k as the
maximum resolution by default, but it is possible to specify the maximum resolution of the DUT for
generating these MOS values using more realistic information.

Figure 66 Additional settings on the AUE step

Each of the provided steps defines a custom Pipeline that is used to generate the desired KPIs

Application Energy Consumption (AEC)

The AEC domain takes as input Voltage and Current measurements, capturing the consumption
of the device under test. Typically, a phone is powered directly through the Power Analyzer, rather
than through its internal battery, which is disconnected. On another power analyser channel, the

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 97/277

power leakage over USB is logged as well. Combined, the sum of the power over the two channels
represent the total consumption of the device while running the test case.

To determine the consumption of the application itself, the measurements captured earlier need
to be offset with calibration values, measured when the phone is in an idle state (see D3.6), without
any application running. These calibration values are device-specific, as well as testcase specific,
as the testcase determines whether the device screen is ON, which logging agent is running, etc.

Figure 67 Use of calibration for AEC domain measurements post-processing

Application Resource Usage (RES)

The RES test step from TriangleKPI performs post-processing on measurements logged by the
DEKRA agent running in parallel with the test application. This agent logs among other metrics the
device’s CPU, GPU and RAM usage while the application flow is being executed. These
measurements are then averaged and post-processed into KPIs.

In the same way as for the AEC domain, to determine the application-specific KPIs rather than the
device-specific KPIs, a substraction of calibration values need to be performed at the post-
processing stage. This is done automatically by the test step when the calibration file is provided.

Figure 68 Use of calibration for RES domain measurements post-processing

Application Network Resources Usage Domain (NWR)

In order to generate measurements for this domain, an additional UXM plugin has been developed,
called UXM Throughput. It communicates with the UXM at the beginning and the end of each
measurement iteration, and records the overall downlink and uplink IP data transferred during the
iteration. These measurements are written to the TAP Result Listener and picked by the post-
processing steps from the TRIANGLEKPI package.

Figure 67 New test steps to capture IP throughput at each iteration

The new KPIs made available by this domain are Total DL IP traffic and Total UL IP traffic, and
allow to assign a mark which quantifies how “mobile data-hungry” a given user flow is.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 98/277

Application Reliability (REL)

As described in the Test Specification, the application reliability domain introduces three new
atomic KPIs:

- Feature availability
- Feature auto-recovery after failure
- Performance degradation

The TRIANGLEKPI TAP plugin calculates the Degradation KPI based on test results across
multiple iterations, for example by comparing an average result from the first 5 iterations to the
average result from the last 20 iterations.

The plugin is supporting post-processing of multiple KPIs, especially all time-centric
measurements (search time, access time, load time), resolution (for content streaming use cases),
success rate and throughput. Implementation-wise, this has been achieved by adding new
Processors which return the Degradation KPI from per-iteration measurements.

The particularity of this KPI lies in its definition of evaluation values (kpi_min, kpi_max and
kpi_type), as it is not straightforward to determine whether a high value of Degradation is a result
improvement or a regression. This depends whether a source KPI is of type “Higher is better” (such
as resolution) or “Lower is better” (such as access time). Currently the evaluation values are tuned
in consequence.

Note that to generate meaningful application reliability KPIs, a test with a large number of iteration
needs to be ran (at least 25, according to test specifications). However, the post-processing TAP
step within TRIANGLEKPI is more flexible as it offers the initial number and final number of
iterations as test step parameters.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 99/277

Figure 69 Example of Reliability KPIs post-processing test step

5.7 Metrics and Mark Computation
Figure 70 shows the work flow of the measurements and results in the TRIANGLE testbed. All the
measurements collected during the testing campaign are stored in the main data base of TAP, in
CSV files and in an OML data base. TAP data base is the main entry point for the post-processing
process to compute the KPIs and the TRIANGLE mark. Once the KPIs are calculated the ETL
framework will map these KPIs into MOS values for each of the domains considered in the project
and will provide a global TRIANGLE mark based on the aggregation of these MOS values. CSV
files contain raw measurements and are also provided to the experiments through the TRIANGLE
Portal. The OML data base also contains raw results providing a persistent storage and enabling
their organization and sharing. The Web visualizer of the results is based on the OML data base.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 100/277

Figure 70 Post-processing and reporting tools

For the post-processing of the results and the generation of the TRIANGLE Mark we are following
the ETL (Extract, Transform, and Load) process. The calculation of the TRIANGLE Mark is divided
into five different steps, where each step performs the normalization or aggregation of the values
generated by the previous step in the chain:

Raw data > KPIs > KPI MOS > Scenario MOS > Domain MOS > use case MOS > TRIANGLE
Mark

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 101/277

Figure 71 Post-processing step 1

This division in steps allows us to separate the process in different modules that perform a part of
the calculation. With this separation we can easily introduce modifications on any of the steps
without affecting the process as a whole. The steps are:

- KPI normalization: The KPIs obtained from the test campaign execution are normalized
into a single MOS value, so that the following aggregations are not affected by the different
units used for each measurement.

- Scenario MOS aggregation: This step aggregates all the KPIs for each of the scenarios of
the campaign into a single MOS value.

- Domain MOS aggregation: In this step the Scenario MOS values for each Domain
(calculated in the previous step) are aggregated into a single value.

- Use Case MOS aggregation: The values calculated in the previous step for each Use
Cases are aggregated.

- TRIANGLE Mark calculation: The MOS values for each of the Use Cases are aggregated
one last time into a single value.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 102/277

Figure 72 Post-processing steps 2, 3, 4 and 5.

5.7.1 Transforming KPIs into synthetic-MOS

The transformation of KPIs into QoE scores is the most challenging step in the TRIANGLE
framework. The execution of the test cases will generate a significant amount of raw
measurements about several aspects of the system. Specific KPIs can then be extracted through
statistical analysis: mean, deviation, cumulative distribution function (CDF), or ratio.

The KPIs will be individually interpolated in order to provide a common homogeneous comparison
and aggregation space. The interpolation is based on the application of two functions, named Type
I and Type II. By using the proposed two types of interpolations, the clear majority of KPIs can be
translated into normalized MOS-type of metric (synthetic- MOS), easy to be averaged in order to
provide a simple, unified evaluation.

Type I

This function performs a linear interpolation on the original data. The variables minKPI and maxKPI
are the worst and best-known values of a KPI from a reference case. The function maps a value,
v, of a KPI, to v’ (synthetic-MOS) in the range [1-to-5] by computing the following formula

= (5.0 1.0) 1.0

This function transforms a KPI to a synthetic-MOS value by applying a simple linear interpolation
between the worst and best expected values from a reference case. If a future input case falls
outside the data range of the KPI, the new value will be set to the extreme value minKPI (if it is
worse) or maxKPI (if it is better).

Type II

This function performs a logarithmic interpolation and is inspired on the opinion model
recommended by the ITU-T in [20] [20]for a simple web search task. This function maps a value,
v, of a KPI, to v’ (synthetic-MOS) in the range [1-to-5] by computing the following formula

=
5.0 1.0

ln ((∗)/))
∙ (ln() ln (∗)) 5

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 103/277

The default values of and correspond to the simple web search task case (= 0,003 and =
0,12) [20][22] and the worst value has been extracted from the ITU-T G1030. If during
experimentation a future input case falls outside the data range of the KPI, the parameters and

 will be updated accordingly. Likewise, if through subjective experimentation other values are
considered better adjustments for specific services, the function can be easily updated.

Once all KPIs are translated into synthetic-MOS values, they can be averaged with suitable
weights. In the averaging process, the first step is to average over the network scenarios
considered relevant for the use case. This provides the synthetic-MOS output value for the test
case. If there is more than one test case per domain, which is generally the case, a weighted
average is calculated in order to provide one synthetic-MOS value per domain. The final step is to
average the synthetic-MOS scores over all use cases supported by the application. This provides
the final score, i.e., the TRIANGLE mark.

5.8 Support for testbed characterization and calibration
In order to enable testbed calibration, a series of TAP plugins and processes have been added to
the testbed.

5.8.1 Calibration YAML file workflow
The calibration YAML file is a plaintext file with YAML syntax. There is one file per TRIANGLE
testbed, and it contains all calibration and compensation values required to run the testbed in a
meaningful and repeatable manner.

This file is accessed from TAP as a new instrument, which points to the file, and a series of
functions have been implemented to read from and write back to the file.

The file is populated through running a TRIANGLE calibration campaign, where calibration and
compensation values will be iteratively inserted into this file. The file contains compensation values
relative to the testbed (such as its latency), relative to each device connected to the testbed (such
as its idle state power and resource usage consumption, RF cabling compensation values, and
other).

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 104/277

Figure 73 Iterative population of the calibration YAML file

At the beginning of a test campaign, the TAP template will initialize the testbed with compensation
values extracted from the YAML file relative to the UE which is being currently tested. This
improves the comparability of test results between devices.

5.8.2 TAP plugins for testbed characterization & calibration

Cabling loss compensation

The DUTs used in the TRIANGLE project have to be modified to allow connectivity with various
external instruments (e.g., UXM, power analyser) via cables. This may lead to a difference in the
desired RF signal power and the actual RF signal power reaching the modem due to the cabling
loss and connection loss. The cabling loss needs to be measured and compensated during the
calibration procedure.

The measurement of the cable loss is performed in downlink, per DUT RX antenna and per LTE
band. The calibration is based on UE-reports based on UXM (RSRP reports).

This is achieved via a TAP test step which:

o Generates RF DL compensation per connector, per band, per cell

o Writes the values in Calibration YAML file, for device under test

o Applies to UXM Control Panel

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 105/277

Figure 74 RF DL compensation plugin

Once the cabling loss characterization is performed for a device, at the beginning of a test
campaign, a compensation of cabling loss test step is executed. This test step reads DL RF
calibration from YAML file for a specific device under test, and then applies to UXM Control Panel
the offset values for all previously calibrated connectors, bands, transceivers.

This approach guarantees identical received pilot power for all LTE devices in the testbed, which
compensates for the soldered RF modifications of the devices.

Figure 75 Offsetting the DL RF power values in UXM control panel

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 106/277

Testbed Latency

In order to characterize the latency that different devices under test (DUT) will experience in the
testbed, the round trip time (RTT) needs to be measured at multiple levels, such as the delay to
reach known servers from the private LAN containing the testbed, the latency in-between the
different instruments and VMs within the TRIANGLE LAN, as well as additional latency brought in
by TRIANGLE network impairments.

Latency can be evaluated from the perspective of a test PC (running TAP), as well as from the
perspective of an Android DUT connected to the testbed.

To facilitate the measurement of the delay, a calibration TAP test has been developed and the
corresponding TAP test steps and TAP plugins have been developed. Once the latency is
measured, the values are saved in the Calibration YAML file.

Figure 76 Step settings for the PC latency characterization test step

DUT Latency characterization

In addition to the testbed latency measurements described in the previous section, an additional
latency measurement is performed from the perspective of the DUT. The UE-perceived latency
may differ due to the IP stack on the device.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 107/277

Figure 77 Step settings for the Android latency characterization test step

The DUT latency is measured pointing to the same servers as the testbed latency measurements.
A series of pings are being sent from the UE to the servers and the average RTT calculated. Once
measured, the UE latency results are saved in the Calibration YAML file. These UE latency values
can then be used to offset additional latency values applied in network impairments, if a TRIANGLE
experimenter wishes a fixed latency for his tests.

5.9 Network scenarios for Device Radio Performance domain

5.9.1 Scenario Definition
In order to support measurements of the new domain Device Radio Performance (RFP), two new
network scenarios have been implemented in TAP and included in the testbed.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 108/277

Figure 78 New network scenarios for RFP domain testing

These network scenarios focus on stressing the device’s receiver sensitivity under background
thermal noise for the Poor Coverage network scenario, and under neighbour cell interference for
the Adjacent channel scenario.

5.9.2 TAP template for sensitivity test cases
In order to implement the RFP test cases RFP/HS/001 (Sensitivity) and RFP/HS/002 (Adjacent
Channel Selectivity) a sequential TAP template has been implemented. In a sequential template
there is no parallel execution of other measurements (such as the DEKRA Performance Tool) as
done in other test plans templates. This should not be surprising as sensitivity and adjancent
channel selectivity is independent of the rest of the components.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 109/277

The RFP test cases workflow is as follows:

1. Start Loop

2. @RAN Emulator: Set Network Scenario

A. Sensitivity Test Case: Set serving cell transmission power level

B. Adjacen Channel Test Case: Set adjacent cell transmission power level

3. @Performance Tool: Measure average throughput for 30 seconds

4. @TAP: Evaluation of test case conditions:

A. If the throughput is above 1.2 x Target value, the power level is decreased
in 1 dB

B. If the throughput is equal or below 1.2 x Target value, the power level is
decreased in 0.2 dB

C. If the throughput is below the Target vale, the loop is broken and the tets
case ends

5. Wait for 10 seconds and jump to step 2.

Figure 79 shows the TAP template which implements the RFP test cases:

Figure 79 TAP Template for RFP Test Cases

The DEKRA Performance Tool TAP plugin has also been upgraded to report a scalar
measurement for the DUT average throughput. Note that in other templates, the throughput is
reported as a vector which contains samples for each time record and it is the ETL which
aggregates that vector to provide averages and other statistics (e.g. for the TRIANGLE Mark
computation). However, in the RFP test case that average throughput is needed in the test case
at runtime in order to evaluate the verdict conditions and set the right transmission power value in
the network scenario.

Table 34 shows a sample result for RFP/HS/001 (Sensitivity) test case.

This TAP step implements
the verdict conditions (from

step 3 in the workflow
above)

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 110/277

Table 34: Validation test result RFP/HS/001

Parameter Value

Initial Throughput 6 Mbit/s

Target Throughput 1 Mbit/s

Sensitivity (KPI) -120 dBm

Loop count 40

Test Case Iteration Duration 600 s

6 Radio Access Network (RAN)
This section describes the elements that compose the RAN of the TRIANGLE testbed.

6.1 eNodeB Emulator
The TRIANGLE testbed has integrated the UXM Wireless Test Set from Keysight as the radio
access network (RAN) of the testbed. The UXM is a flagship mobile network emulator that provides
state of the art test features.

The Keysight E7515A UXM Wireless Test set is capable of emulating a 2G, 3G, 4G and NB-IOT
base stations. The UXM is a highly-integrated instrument created for functional and RF design
validation in 4G and NB-IOT. It provides the integrated capabilities needed to test the newest
designs, delivering LTE-Advanced Pro data rates up to 1 Gbps. In addition, the UXM allows
functional test by emulating a wide range of complex network operations, such as LTE intra-RAT
and LTE inter-RAT mobility, WLAN offload and end to end VoLTE. The UXM also provides protocol
messaging.

The number of features and capabilities of the UXM is very extensive. The purpose of this section
is to highlight its most relevant features for the testbed. For a complete reference of capabilities
and documentation about such capabilities, the reader is referred to [9].

Feature Description

Basic Cell Configuration The UXM provides an API to control most of the network
parameters. Among the basic aspects that can be configured, the
following are highlighted:

- Duplex mode: FDD or TDD

- Downlink and Uplink bandwidth

- Most of the FDD and TDD LTE bands are supported

- TDD frame configuration

RF Channel Conditions The UXM is capable of emulating different channel conditions in
terms of signal levels, fading profiles, and noise and interference
profiles. The following propagation conditions are supported:

- Static

- Extended Pedestrian A (EPA)

- Extended Vehicular A (EVA)
- Extended Typical Urban Model

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 111/277

Mobility The UXM is capable of emulating the following mobility scenarios:

- Intra-System Handover

- Inter-System Handover
- Roaming

Cell Load The UXM is capable of emulating different cell loads by controlling
the number of resources allocated to the user.

Dual Connectivity Within the scope of the TRIANGLE project the Testing framework
shall be able to support dual connectivity between 3GPP radio
access nodes and between 3GPP and non-3GPP radio access
nodes.

Supported Formats GSM/UMTS/LTE/LTE-A/NBIOT

6.2 RF switches
TRIANGLE offers several reference devices in the testbed. TRIANGLE users may select a given
device at any moment. Therefore, these devices should be available to the testbed at all times.
This poses a considerable challenge as the RAN emulator only has 4 RF connectors. Obviously,
wiring all the devices to the RF ports of the RAN emulator could create instabilities, e.g., one rogue
device connecting to the network instead of the desired one. To avoid such issues and for the sake
of a more stable system TRIANGLE uses an RF switch. This switch is capable of creating a 1 to 1
mapping, meaning that at a given time only a device is connected to the RAN emulator.

TRIANGLE is using the Keysight L7104A component, which is an electro-mechanical switch
providing isolation and 0.03 dB insertion loss repeatability. The RF switch is shown in Figure 80.

Figure 80 Keysight RF Switch Product Number L7104A

The RF switch is controlled by a LXI-compliant 11713C attenuator/switch driver, which provides
remote or front-panel drive control. This controller provides means to programmatically establish
wired connections with the desired device under test. The controller is shown in Figure 81.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 112/277

Figure 81 Keysight 11713C LXI-Compliant Attenuator/Switch Driver

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 113/277

7 Evolved Packet Core (EPC)
The core network available in the TRIANGLE testbed is provided by Polaris Networks. It is a core
network emulator which provides carrier grade performance for up to 2000 clients. The platform
supports positive and negative behaviours, remote sniffing of all the interfaces of the network
elements, introduction of traffic impairments in the transport interfaces and support for multiple
instances of the following EPC entities:

 MME

 SGW

 PGW

 PCRF

 HSS

 ePDG

 ANDSF

The configuration and creation of these components can be done by means of a GUI interface,
accessing a programmable API written in TCL, and partially with a C++ API developed in the FLEX
project.

Figure 82 Polaris Networks EPC GUI and TCL API

7.1 Features and Configurable Parameters
The following table depicts the list of available features and configurable parameters by the user
of the entities that compose the Polaris Networks EPC emulator.

Table 35 MME configuration parameters

MME Features Details

Standard Interfaces S1-MME, S11, S10, S6a, S13, S3, SBc, SGs, S102, M3, Sm

Protocols/Interfaces with
Configurable Behaviour

S1 Setup, S1AP, NAS, GTv2, SGsAP, Diameter

Procedures Attach, Paging, SMS, Detach, Location Report, Handover, etc.

Capabilities Partial Path Failure, PGW Restart Notification, Modify Access Bearer
Request, Network Triggered Service Restoration, Relay eNB, IMS

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 114/277

Voice over PS session, Diameter Proxy Agent Type 2, Extensive
Diameter Validation, IPv6/IPv4, Roaming, Configuration of protocol
policies.

S1AP Procedures with
Configurable Behaviour

Setup Request, Reset, eNB Configuration Update, eNB Configuration
Transfer, Initial UE Message, Uplink NAS Transport, UE Context
Release Request, Handover Required, Handover Notify, Handover
Cancel, Path Switch Request, Initial Context Setup Response,
Handover Request ACK, E-RAB Setup Response, E-RAB Modify
Response, E-RAB Release Response, UE Context Modification
Response

NAS (EMM and ESM)
Procedures with Configurable
Behaviour

Attach Request/Complete, Detach Request/Accept, TA Update
Request/Complete, Security Mode Complete/Reject, Service Request,
Authentication Response/Failure, Activate default/dedicated EPS
bearer accept/reject, Modify EPS bearer context accept/reject, PDN
connectivity request

GTPv2c Procedures with
Configurable Behaviour

Create/Update/Delete bearer request, identification request/response,
context request/response/acknowledge, MBMS session
start/update/stop,

SGsAP Procedures with
Configurable Behaviour

SGsAP location update ack/reject, SGsAP paging request, SGsAP
release request, SGsAP alert request

Diameter Procedures with
Configurable Behaviour

Cancel-location-request, insert/delete-subscriber-data-request, reset-
request

Table 36 PGW configuration parameter

PGW Features Details

Standard Interfaces S5-c, S5-u, S8-c, S8-u, SGi, S2a, S6b, Gx

Protocols/Interfaces with
Configurable Behaviour

GTPv2-C, PMIPv6, Diameter, GTPv1-U

Functionalities Traffic generation, traces, apn, protocol configuration

GTPv2C Procedures with
Configurable Behaviour

Create Session Request, Delete Session Request, Modify Bearer
Request, Modify Bearer Command, Delete Bearer Command, Bearer
Resource Command

PMIPv6 Procedures with
Configurable Behaviour

Proxy Binding Update, Binding Revocation, Heart Beat

Diameter Procedures with
Configurable Behaviour

Re-Auth Request, Session Termination Request

GTPv1U Procedures with
Configurable Behaviour

QCI demands.

PGW Features Details

Standard Interfaces S5-c, S5-u, S8-c, S8-u, SGi, S2a, S6b, Gx

Table 37 PCRF configuration parameters

PCRF Features Details

Standard Interfaces Gx, Rx, S9, Gxx

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 115/277

Functionalities Services Creation/Modification/Deletion, IMS, Roaming

Diameter Procedures with
Configurable Behaviour

Authorisation and Authentication Request, Credit Control Request,
Session Termination Request

Table 38 SGW configuration parameters

SGW Features Details

Standard Interfaces S11/S4-c, S1/S4/S12-u, S5/S8-c,S5/S8-u, Gxc

Protocols/Interfaces with
Configurable Behaviour

GTPv2-c, PMIPv6, GTPv1-U

Capabilities
Partial Path Failure, PGW Restart Notification, Modify Access Bearer
Request, Network Triggered Service Restoration, Diameter Proxy
Agent Type 2

GTPv2C Procedures with
Configurable Behaviour

Create/Delete/Modify/Update Session Request, Release/Modify
Access Bearer Request, Create Indirect Data Forwarding Tunnel
Request

PMIPv6 Procedures with
Configurable Behaviour

Binding Revocation, Heart Beat

GTPv1U Procedures with
Configurable Behaviour

QCI demands.

Table 39 HSS configuration parameters

HSS Features Details

Standard Interfaces S6a, Zh, Cx

AAA interfaces S6b, STa, SWd, SWm

SPR Functionality
Service definition (Service data flow, piggybacked bearer creation,
QCI, Priority Preemption, UL-GBR, UL-MBR, DL-MBR, DL-GBR),
AMBR, GBR, Charging, QCI, Priority,

Subscribers Subscription groups, Subscription Profiles

Diameter Procedures with
Configurable Behaviour

User-Authorisation-Request, Server-Assignment-Request, Location-
Info-Request, Multimedia-Auth-Request, Authentication-Information-
Request, Update-Location-Request, Purge-UE-Request, Notify-
Request

HSS Features Details

Table 40 ePDG configuration parameters

ePDG Features Details

Standard Interfaces SWu, S2b, SWm

Protocols configuration IKEv2, PMIP, Diameter

IKEv2 Configurable
Behaviour

IKE_SA_INIT, IKE_AUTH, INFORMATIONAL

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 116/277

PMIPv6 Configurable
Behaviour

Binding Revocation, Heart Beat

Diameter Configurable
Behaviour

Re-Auth Request, Abort Session Request

Table 41 ANDSF configuration parameters

ANDSF Features Details

Standard Interfaces S14, Zh, Ub

Rules
ISRP Rules (flow based, service based, non-seamless offload rules),
ISMP Rules (access networks, time of day conditions, validity areas)

Non 3GPP Access WLAN, 3GPP2, WiMax, Geo.

ANDSF Features Details

Standard Interfaces S14, Zh, Ub

7.2 Measurement and Behaviour
The EPC deployment can provide the signalling available in between all the components of the
network. This feature can be supported by directly sniffing in the interfaces but also with an
automatic system provided by the Minimization of Drive Test features (see TS 32.422) that can
send the messages in XML format to an external server.

Additionally, the EPC modules themselves can provide statistics regarding the procedures
associated with each protocol. All the EPC modules provides information on the received
messages as well as failure/success counts for each procedure.

Table 42 HSS Statistics

Interface Procedures

S6a/S6d
Update location, canel location, authentication information retrieval,
insert subscriber data, delete subscriber data, purge ue, reset, notify
and ME identify check.

Cx
User authorization, authentication information retrieval, server
assignment, user location information retrieval, registration
termination, push profile.

SLh Routing info.

Sh User data, profile update, subscribe notifications.

S6b Authorization, abort session, session termination.

STa and SWm Authentication Authorization, abort session, session termination.

In the case of the MME the system also provides statistics on the subscribers in the different
mobility states and number of connections in the different interfaces. In the case of general
procedures there is also some information regarding the minimum, maximum and average time to

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 117/277

finish some procedures such as attach, detach, tracking area update, S1-handover, X2-handover,
service request, paging, pdn connection, dedicated bearer activation, etc.

Table 43 MME Statistics

Interface Procedures

NAS
Attach, network/UE initiated detach, security, service request, TAU,
ESM information, GUTI reallocation, etc.

S1AP
S1 Setup/Reset, eNB configuration update, MME configuration
update, initial context setup, UE context modify, UE context release,
e-RAB setup, e-RAB modify, e-RAB release, HO preparation, etc.

GTPv2-C

Create session, delete session, modify bearer, release access bearer,
delete bearer, create/delete indirect data forwarding tunnel, get
identification, create context, forward relocation, forward relocation
complete, etc.

Diameter
Update/cancel location, authentication information, insert/delete
subscriber data, purge UE, reset, notify, ME identity check, mobile
terminated location report.

M3AP M3 setup, session start/stop.

LCSAP Location service, reset.

SBcAP Write replace warning, stop warning.

SGsAP

Paging for non-EPS services, location update for non-EPS services,
Non-EPS alter, IMSI Detach from EPS/non-EPS services,
VLR/MME/HSS failure, MME information, tunnelling of NAS
messages, service request.

S102AP S102 session establishment/termination, S102 tunnel redirection

The PCRF also provides some timing statistics for procedures such as IP-CAN session
establishment/termination, service activation/modification/deletion, S9 sub-session
establishment/termination, AF session establishment/termination, gateway control session
establishment/termination.

Table 44 PCRF Statistics

Interface Procedures

Gx, Gxx and S9 Credit control, re-authorization

Rx
Authentication authorization, re-authorization, abort session, session
termination.

The PGW provide timing stats for PDN connection/disconnection and dedicated bearer
activation/modification/deactivation and also statistics regarding the throughput and number of
packets in the S5/S8 and S2a/S2b interfaces per user and RAB id.

Table 45 PGW Statistics

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 118/277

Interface Procedures

GTPv2-C
Session creation/deletion, bearer modification, UE requested bearer
operation, network initiated dedicated bearer creation/update/deletion.

Gx Credit control, re-authorization

S6b
Authentication authorization, re-authorization, abort session, session
termination.

PMIPv6-C Create/delete session.

The SGW provides information on the data traffic per user and per bearer in the S1-U/S4-U/S12-
U and S5-U/S8-U interfaces. It also provides information on the control packets of the data plane
such as echo request/response, error indication, SEH notification or end packet.

Table 46 SGW Statistics

Interface Procedures

GTPv2-C

Create/Delete session, modify bearer, release access bearer,
downlink data notification, create/delete indirect data forwarding
tunnel, create/update/delete bearer, change notification, update/delete
PDN connection set, modify access bearer, PGW restart notification.

PMIPv6-C Create session/delete session.

Diameter Credit control, re-authorization.

And the testbed can also provide sniffed packets for all the interfaces that interconnect the core
network both internally and externally.

7.3 TRIANGLE EPC Plugin
The TRIANGLE testbed can deploy automatically a functional EPC to be used in the different
experiments by means of the “EPC plugin”, implemented by TRIANGLE project. This plugin allows
users to created fixed topology scenarios (regular deployments of MME, SGW, PGW, PCRF, HSS
and ePDG). The standard architecture that is deployed with the EPC plugin is depicted in the
following figure:

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 119/277

Figure 83 EPC architecture

The interfaces which are not shown in the figure are setup in different loopback interfaces as per
the following table.

Table 47 EPC Elements loopback IPs and not depicted interfaces

Element IP loopback Interfaces not depicted

MME 127.0.0.5 S10, M3,S13, S3, SBc, SGs, S102, Sm, SLg, SLs, Sv

SGW 127.0.0.4 Gxc

PGW 127.0.0.2 S5, S2A, S2B, Gx

HSS 127.0.0.1 Zh, Cx, SLh, Sh, STa, SWd, SWm

PCRF 127.0.0.3 Gx, S9, Sxx

The configuration can be adapted to any user willing to test any particular interface or component
in the network.

Besides automatically deploying the EPC, the EPC plugin is also able to trigger certain procedures
on the network:

• MME Detach IMSI, triggers a detach procedure for a given IMSI. The detach message will
be of type 1, cause 0 and indicate that a reattach is required. This is useful to obtain multiple
attach samples in order to analyse both the behaviour and time consumed by the
procedure.

• MME UE Context Release IMSI, which triggers a UE context release with cause group 3
and cause value 0.

• MME Paging IMSI, tells the MME to initiate a paging procedure for the given IMSI.

• PCRF Create Dedicated Bearer. The command will create a dedicated radio bearer
matching a service with the following parameters (that have to be provided by the user):

o IMSI

o UE IP

o QCI (Quality Class Indicator)

o Maximum Bit Rate for uplink and downlink

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 120/277

o Guaranteed Bit Rate for uplink and downlink.

• PCRF Release Dedicated Bearer. The command will release a dedicated bearer matching
the following parameters:

o IMSI

o UE IP

o QCI

More details on the implementation of the system are provided in D4.1 and in the internal
deliverable “EPC SCPI Server”.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 121/277

8 Transport

8.1 SDN
The transport layer consists of three independent network domains interconnected through a
virtualized routing environment and managed by several SDN components. On the one hand this
approach allows to quickly test new configurations without the time consuming task of routing new
physical lines between the networks and, on the other hand, it does not limit the future expansion
of the test facilities as the virtualized network equipment can connect to their physical counterpart,
and thus any component can be moved to another location and only those routers and switches
on the edge have to be made aware of the new addresses. Figure 84 shows the three domains
considered owned by two different actors, the mobile operator and the backhaul operator:

 RAN or Access network of the mobile operator, which includes the base stations and the
network equipment.

 The EPC of the mobile network.

 The distribution network between the two above.

Figure 84 Software defined network deployment at TRIANGLE testbed

The devices inside each domain are isolated from each other, effectively belonging to different
networks. The interconnection is provided by the following three components:

 OpenvSwitch, a fully compliant OpenFlow implementation for virtual switches, designed to be
run in a virtualized environment but that can also be used with real network equipment.

 Quagga, a software router implementing several routing and discovery algorithms as well as
advanced network functionality like multipath Border Gateway Protocol (BGP) or
Intermediate-System to Intermediate-System (IS-IS) routing.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 122/277

 ONOS, a network orchestrator or SDN controller which provides a transparent interface to
monitor and manage a distributed deployment in different subnetworks. Different instances
running in different networks can be interconnected to present a unified interface to control
and visualize all the resources and traffic flows from a central location. It also provides a high
level API to inject new rules for specific links based on the source or target address, or the
type of traffic.

The initial deployment consists on Virtual Machines hosted on a Linux KVM hypervisor
environment, with isolated virtual networks configured in the host machine. The different subnets
are not linked with each other and the host’s only role is to provide a gateway to the public internet
for the VMs, but it cannot be used to break that isolation. The way to interconnect the networks
is the equivalent of a real environment: each router or switch needs an additional port (i.e. a
virtualized Ethernet device) for every network it belongs to.

The low-level configuration of each VM, that is, the IPs and the number of networks it connects
to, is expected to remain stable for the duration of the project so it has been made by hand. The
configuration of the transport network is one of the cornerstones of the setup, so it has to allow
automatization.

Once deployed, the Quagga routers should be able to work without direct intervention from the
operator. As it implements discovery algorithms like BGP and OSPF it will detect other routers in
the networks it is connected to and will establish and maintain the routes between the hosts in
each network.

OpenvSwitch works out-of-the-box as a learning switch which makes a discovery search using
the ARP protocol when a new host sends packets through it, but it also has advanced features
that can be configured using the OpenFlow protocol. Some of the switching capabilities expected
to be used in the project are:

- Creation of data plane and control plane as differentiated flows in each switch. It will allow to
process both types of traffic with different priorities or even through different routes.

- User traffic identification and matching against rules to provide different QoS to the data
coming from the UE.

- Transparent mirroring of certain traffic flows to allow advanced interconnection schemas
between the EPC and groups of users.

OpenvSwitch can be configured by command line (or by means of a script) specifying the flow
rules to be installed or modified, but this approach can be cumbersome in a dynamic environment
as it would be necessary to create the commands on the fly.

Another way to configure the switch is to set up a controller node in each OvS instance. This way,
when a packet without a matching rule arrives to the switch, it will ask that controller what actions
it should perform for that packets and whatever follows in the same flow.

The ONOS orchestrator will take the role of the switch controller, as it provides a high-level Java
API to inject OpenFlow rules as a result of a petition from any switch or router associated with it.
It also provides a web interface to monitor the network and to install and remove rules for different
instances of the switches and routers, as can be seen in Figure 85.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 123/277

Figure 85 ONOS Interface

8.2 Emulated impairments
The testbed will offer the possibility of integrating artificial impairments in the interfaces of the core
network and the application servers. To do so, two different alternatives are being explored:
impairments introduced by the EPC emulator and impairments introduced by external applications.

The impairments introduced by the EPC emulator can be set in any of the interfaces of each of the
components of the EPC and it enables the definition of the following impairments:

 Limit of packets, which is the number of packets to which the impairment will be applied. If
the limit is set to 0, it will be applied to all the packets.

 Delay Parameters, which includes, delay, jitter, delay correlation, delay statistical distribution,
percentage or reordered packets, percentage of reorder correlation and gap.

 Loss Parameters, distribution type, percentage of lost packets, percentage of correlation.

 Corruption and Duplication, percentage and correlation for both.

To access this functionality EPC emulator offers a graphical interface and a TCL script.

The other possibility to integrate emulated impairments in interfaces not related to the EPC is the
use of external applications. The main explorations by the TRIANGLE project have been the use
of mininet and dummynet [4] (the userspace version is able to process 6 million packets per
second with simple filtering). The main issue with these types of approaches is the performance
that can be offered in real environments, in the preliminary test carried out by the UMA team

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 124/277

mininet can offer up to 100 Mbps when connected to equipment outside the emulation
environment, and the integration can be done using command line parameters. There are still
ongoing tests efforts with dummynet, and the integration with the testbed will be done based on
command line parameters.

8.3 Virtual Path Slice Engine
RedZinc’s VPS Engine, VELOX, provides an API for 3rd party application developers so that
services between two endpoints with a specified bandwidth reservation can be requested without
the specific knowledge of how the network itself is deployed or how many Autonomous Systems
need to be involved in order to establish the service. The API also allow the listing of running
services and services available for request. Unique API keys are generated on demand and bound
to developers so that all services can be correctly charged, adding the capability to simulate a
financial layer in the testbed.

8.3.1 VPS engine usage
In order to use the VELOX API an application must:

 Create a TCP connection to known IP address/port (provided by local operator)

 Write Request (as a single text line, new line ends a request)

 Read Response (sent as a single line)

 Connections are terminated on the VELOX side after sending the response

All Requests must use the API key generated by the local operator VELOX.

8.3.2 Usage considerations
API Key

The API Key provided will always be a standard UUID in human readable format without dashes.

Example: ECE335024E3E466CA98BF5014D5C7D86

IPv4 vs IPv6

VELOX Supports both IPv4 and IPv6 services, but does not allow IPv4 mixed with IPv6, in requests
that have both source and destination addresses, both must be of the same IP version. All versions
of IPv6 abbreviation are supported.

Security

Currently the system considers a safe connection already exists between the Operator and the 3rd
Party.

8.3.3 Usage example
In this scenario the client application is considered to be any application that uses the VELOX API
to access VELOX services.

Modify and Run requests are considered optional since not all circumstances will require their use.

While the List request is the first to be executed it is not mandatory before every Trigger request,
the use of the List request should be done as deemed necessary in order to check for any service
library changes.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 125/277

Figure 86 VPS engine usage example

A detailed description of VPS engine API is provided in Appendix 3.

8.4 TRIANGLE Configurable Traffic Shaping API
This section highlights a new functionality added in the Release 4 of the TRIANGLE testbed, which
offers to the end-user a new traffic filtering and shaping API and introduces packets scheduling
conditions similar to live networks, especially for heavy downlink-starved traffic models.

Typically, in the TRIANGLE testbed, the packet flow between an application content server and
the UE experiences a bottleneck in the LTE DL connection between the UXM and the UE. This is
by design, caused by the network scenarios, to represent other cellular users as well as realistic
propagation conditions. When the LTE link is the bottleneck, it leads the UXM to buffer packets in
downlink, which can unfortunately lead to very high one-way delays. If the application server keeps
streaming data (notably in UDP type of traffic) and the LTE link’s capacity does nott increase, the

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 126/277

downlink packets will stay buffered until the end of the application flow, which impacts downlink
reception delay.

The new API makes it possible to:

 apply a filter on a certain type of traffic (very flexible filtering, can capture any kind of
protocol)

 traffic-shape the filtered traffic to guarantee latency at the expense of packet loss
 leave all non-filtered traffic untouched (this can be used for the control path)

A standalone executable is also provided which leverages this API and controls the data flow in a
way to guarantee at maximum 500ms of one-way delay yet keeps the LTE link capacity saturated
to avoid capacity loss.

8.4.1 Implementation Details

Location in the Testbed

The Impairments Python Server (originally developed by UMA) has been extended with a new API
to control a new type of impairments:

Traffic Shaping

- A set of packet filters and bucket filters can be added at the EPC network
interface

- Controlled via new custom SCPI commands
TRA:DEF:TSH:CLN
TRA:DEF:TSH:ENA 1,192.168.3.11
TRA:DEF:TSH:PAR 10mbit,500ms,10kb

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 127/277

Figure 87 Location of the Traffic Shaper within the testbed

To take advantage of the new API to control the traffic, a new executable is running in the
background on a Windows machine

- Periodically sends pings to the UE
- Estimates the UXM buffer status and LTE link capacity
- Sends SCPI commands to the impairments server to adjust the flow parameters of

the buffer at the EPC

The API can also be leveraged in a TAP plugin, or exposed to experimenters.

Linux Filters

A new virtual network adapter is configured to receive traffic from the physical adapter, and perform
filtering and traffic shaping.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 128/277

Figure 88 Virtual network adapter with Linux packet filters

The commands below are being sent by the API to initialize the filters:

Figure 89 Configuration of the Linux network interfaces by the Traffic Shaper API

Traffic Shaper standalone application algorithm

In order to tightly control the filtered flow, a tracking algorithm has been designed to simultaneously
maintain the UXM buffer full yet prevent it from filling beyond the LTE’s link capacity.

It relies on a control path over ICMP between the standalone application and the UE.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 129/277

Figure 90 Traffic Shaper standalone application algorithm overview

There are 4 overall outcomes of a ping transmission, from top to bottom:

1) Half the traffic shaper bitrate:
This is the worst scenario: the UXM buffer has more than 2s of data queued, LTE link is
drowned in old packets.

a. The traffic shaper detects that the UXM buffer is too full and quickly decreases the
bitrate to allow the buffer to empty itself, before refilling it with fresh packets

b. After the UXM buffer has recovered, the traffic shaper bitrate is increased to
match the link capacity

2) Increase the TS bitrate by 5 Mbps
This is a bad scenario: the UXM buffer is nearly empty, the pings are ”pass-through”. The
buffer needs to be refilled more aggressively.

a. The traffic shaper detects the UXM buffer being empty and quickly increases the
bitrate to saturate the available link capacity (in ~6 seconds due to the 30 Mbps
bitrate increase)

b. Once the link capacity is achieved, the traffic shaper-imposed bitrate matches the
capacity.

3) Adjust the TS bitrate to the estimate
Stationary mode: the UXM buffer is increasing in size as noted by ping RTT increase, and
the traffic shaping bitrate is adjusted to match estimated capacity.

a. When the ping latency increases, a new sink bitrate estimate is calculated and the
traffic shaper bitrate adapted.

4) Optimistically slowly increase the TS bitrate
Optimistic increase of the traffic shaper bitrate in the case the ping latency decreases to
avoid empty UXM buffer situations.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 130/277

a. When the LTE link capacity undergoes small changes (light increase/decrease),
the algorithm optimistically increases the traffic shaper bitrate to keep the buffer
full.

8.4.2 Testbed deployment

Python configuration

This installation guide requires an existing functional deployment of the UMA impairment server,
as it will only be updated with new features.

New command element: TSH (TSH:PAR for parameters, TSH:ENA to enable, TSH:CLN to clean
up).

Linux commands being sent are exposed in TransportEmulator.py.

Key variable to edit is: “FORMAT_TRAFFIC_SHAPING_IDB_ENABLE”

It highlights which bytes in a packet the filtering is happening upon.

Example filters:

- Filtering all UDP packets: “match u8 0x11 0xff at 9”
o This matches a single byte to the value of 0x11 at position 9 (in the IP header, the

protocol is at position 9, and 0x11 is 17, which corresponds to UDP)

- Filtering all UDP within GTP packets: “match u8 0x11 0xff at 49”
o Here, we are looking at the position 49, because of 20 bytes for the IP header, 8

bytes for UDP, 12 bytes for GTP header, and then 9th byte in the IP header:

IP packet
IP header IP payload
 UDP header UDP payload

 GTP header GTP payload (IP packet)
 IP header IP payload

20 bytes 8 bytes 12 bytes Protocol at 9th byte

- Filtering can be made in an arbitrary way, to any byte, as long as the filter in the variable

highlighted above is modified

Shell configuration

Additional commands have to be added to the sudoers file, using sudo visudo:

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 131/277

Figure 91 Sudoers file after edits

- /sbin/tc should already be there from a previous Impairments server installation
- Add /sbin/modprobe and /sbin/ifconfig to the list of commands to run without sudo

This is because the new unix commands used by TrafficShaper API calls run modprobe and
ifconfig, and the architecture of the Impairment Server runs these commands via shell opened from
a remote host.

Examples of traffic shaping API calls

The following example commands (note that :DEF: represents the network interface configured in
the Impairment server interfaces.cfg configuration file:

- TRA:DEF:TSH:CLN
o Cleans up the connection

- TRA:DEF:TSH:ENA 1,192.168.3.11
o Enables traffic filtering for the DUT at IP 192.168.3.11

- TRA:DEF:TSH:PAR 10mbit,500ms,10kb
o Limits the filtered traffic towards the UE at 10mbit of peak bitrate, with 500ms max

latency

If the commands execute successfully (no error in the SCPI reply, no error in the shell which runs
the server), then the autonomous C# executable can be run.

Testing should be performed by ideally running a type of traffic affected by the filter, for example
a downlink UDP stream, or a UDP stream within a GTP flow.

Typical test flow:

- Configure the UXM channel impairments (AWGN, DL scheduling) for a LTE link capacity
of 30 mbps

- Connect the UE, configure an iperf sink at the UE
- Configure an iperf source in the network
- Stream large bitrate UDP from the source to the sink
- When enabling the traffic filtering and by sending traffic shaping commands, there should

be visible impact on the DL UDP traffic seen at the UE side

Traffic Shaper application configuration

The traffic shaper C# executable comes with a configuration file
“TRIANGLETrafficShaper.exe.config”
It contains the settings that the executable will use at runtime:

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 132/277

- impairmentServerIP & impairmentServerPort
o On which IP and port will the executable reach the Python Impairment server

- interfaceAlias
o What is the alias of the network interface that the Impairment server is trying to

reach – this is configured in interfaces.cfg file of the Impairment server
- ueIP

o What’s the UE IP (as the traffic shaper filters packets towards a unique UE IP)
- averagePing

o What is the average round-trip time between the Windows host which will run the
C# executable and the UE. It is crucial that this value is correctly set as the traffic
shaping uses it to determine whether the buffer is empty or filling up.

- pingTimeout (default: 2000ms)
o How long to wait before declaring the ping lost and claiming that the buffer is full.

If this value is too high, the UXM buffer will overfill with stale packets.
- minimumBitRate (default: 1mbps)

o Minimum bitrate value that the Traffic Shaper will apply
- maximumBitRate (default: 60mbps)

o maximum bitrate value that the Traffic Shaper will apply
- initialBitRate (default: 10mbps)

o initial bitrate value that the Traffic shaper will apply at app start

Before running the executable, it is crucial that:

- It is on the same network (or at least can reach via SSH or ping) as the Python impairments
server and the UE.

- The 5 configuration parameters in bold above are edited and set properly.

The traffic shaper executable will run autonomously when double clicked.
Built on VisualStudio 2017. The target framework is .net 4.6.2.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 133/277

8.4.3 Testbed results & conclusion

Figure 92 Traffic shaping testing in Urban Pedestrian network scenario

From the figure above it can be observed:

- There is identical throughput when activating the traffic shaper (no link capacity loss, UXM
buffer never empty)

- Comparable jitter
- One-way delay significantly decreased (only “fresh” packets are reaching the UE)
- Comparable packet loss (as the link capacity is identical), however, packets are discarded

“along the way” rather than only the last ones.

In conclusion, the proposed Traffic Shaper:

 Effectively reduces the UDP one-way delay while maintaining comparable
throughput

− This significantly reduces the age of the UDP packets reaching the UE
 Does not impact any other traffic
 Integrates in the existing TRIANGLE testbed architecture

− New type of channel impairments via update of the UMA Python server
− Can intercept all S1 packets leaving the core network via changes on Linux

network interface
− Can run on only Windows machine in the subnetwork

 Is configurable in the type of traffic to be shaped
− Plain UDP with traffic passing through a Linux machine

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 134/277

− Or UDP within GTP within UDP for an external S1 interface testbed

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 135/277

9 User Equipment (UE) and Accessories

9.1 Supported UEs
The TRIANGLE testbed provides a set of mobile phones ready to be used. These devices have
been connectorized as shown in this section. Devices sent for testing in the TRIANGLE testbed by
users must be provided in pairs, one connectorized. Table 48 shows the current status of
commercial devices connected to the TRIANGLE testbed.

Table 48 Current status of devices integrated into the testbed

Device Main Ant 1 Main Ant 2
Diversity
Ant 1

Diversity
Ant 2

Battery

Samsung Galaxy
S4

Yes N/A
Yes N/A Yes

Samsung Galaxy
S5 Neo

Yes N/A
No N/A Yes

Samsung Galaxy
S6

Yes N/A
Yes N/A Yes

Samsung Galaxy
S7

Yes No
Yes No Yes

iPhone 7 Plus Contact Ant N/A No N/A No

Samsung Galaxy
S8

Yes No
Yes No Yes

Samsung Galaxy
S9

Yes No
Yes Yes Yes

HTC One Contact Ant N/A Contact Ant N/A No

9.2 DUT HUB
Similarly, there is also a need to connect the UEs via USB ports. This connection is used to send
command to the UEs and to operate the applications and services. To avoid the challenges of
connecting all the UEs directly, we use a Keysight DUT HUB. This is basically a USB hub which
can be controlled via SPCI commands. This allows us to only connect the desired UE to the
computer controlling the UE. The concept is very similar to the RF switch explained early.

The DUT features 4 high power USB ports. It is capable of delivering 1.5 A per port (Max. 5 A in
total). It is able to power on or power off each USB port separately. The list of commands is
provided in the table below:

Table 49 DUT HUB SCPI command reference

Command Description

*ON <port> Turns on power to a given port identified by <port>. E.g. “*ON 1” to turn
on power for port 1.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 136/277

*OFF<port> Turns off power to a given port identified by <port>. E.g. “*OFF 1” to
turn off power for port 1.

RATE<Hz> Set the sampling rate to between 20 and 1000 Hz.

READ? Returns the last acquired samples as a IEEE-488 block, and clears
the sample buffer. Samples are encoded as signed 16-bit numbers in
bundles of 4

– one value for each port. The unit is 0.1 mA.

E.g. “READ?” might return
#18<0x10><0x01><0x0><0x0><0x40><0x0><0x0><0x0>

This indicates that 1 sample has been acquired for each port. The
first port returned 0x10,0x01 which is 272 as a 16-bit number,
corresponding to 27.2 mA.

Port 2 and 4 are 0 mA, while port 3 measures 6.4 mA.

READ:ASC? Returns the last acquired samples as comma-separated numbers in
bundles of 4 samples, and clears the sample buffer.

E.g. “READ:ASC?” could return: 272,0,64,0,217,0,67,0

Corresponding to two acquired samples.

27.2, 0.0, 6.4, 0.0 mA for the first sample.

21.7, 0.0, 6.7, 0.0 mA for the second sample.

9.3 Android Support
The TRIANGLE testbed supports the following features on Android devices:

 Device and App automation, for controlling the whole device interface or a single
application.

 Access to the logging messages generated by the device during the execution of the
experiments.

 GPS emulation by generating the satellite radio signals.

 Traffic capture in pcap format.

9.4 iOS Support
The TAP plugins developed for controlling devices based on iOS has been integrated into the
master template which drives the execution of tests launched through the Portal. Thus, iOS devices
can be selected in the Portal during the Creation of the testing campaign.

9.5 IoT devices performance characterization
The Keysight UXM base station emulator supports cellular IoT technologies, including NB-IoT and
LTE-M. Any off-the-shelf cellular IoT device or a pre-commercial development kit can be connected
to a highly configurable emulated cell, and multiple data performance as well as power
consumption KPIs can be extracted.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 137/277

Figure 93 IoT Power & Performance characterization testbed

The IoT KPIs focused on during the TRIANGLE project are:

- Power consumption

o Impact of radio aspects

 TX power (P-max sweeps), UL/DL rate (across MCS & RU), data over C-
plane versus U-plane

o Impact of network parameters

 Subspacing, multi-tone vs single tone, number of repetitions, coverage
levels

o Impact of protocol procedures

 SYNC consumption, Attach consumption

o Impact of power saving mechanisms

 PSM, I-eDRX, C-DRX, cost of turning OFF the device

- Data performance

o Downlink data throughput under static channel with AWGN, across multiple MCS
indexes, different number of data, DCI or HARQ repetitions, or other IoT downlink
scheduling parameters.

An accurate matching of power consumption to different UE states is achieved through
synchronization of power measurements with layer 1, 2 and 3 messages exchanged between the
cell and the UE, at a sub-1ms accuracy.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 138/277

Figure 94 Synchronization of IoT Protocol & PHY messages with power consumption

The power consumption KPIs can be used in conjunction with an analytical model to predict an
IoT device’s estimated battery lifetime, based on a realistic coverage level and traffic model.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 139/277

10 Local Applications and servers

10.1 Servers virtualization (TNO extension Release 3)
This section describes the orchestrated cloud platform delivered by TNO as an extension to the
TRIANGLE testbed. It consists of two main parts: The Orchestrator and the Virtual Infrastructure
Manager.

The Management and Network Orchestration (MANO) stack allows for rapid deployment of
Virtualized Network Functions (VNFs), their flexible configuration, lifecycle monitoring and
decommissioning in order to automatically operate a potentially complex Network Service (NS). A
model driven approach is taken to describe VNFs and NSs. MANO enhances interoperability with
other components in the system such as Virtual Infrastructure Managers (VIMs) where the
(virtualized) functions are deployed. To allow these deployments, VIM manages storage and
networking resources, providing flexible and scalable infrastructure for the modern services such
as Virtual Reality or ultra-high definition TV.

10.1.1 Cloud infrastructure description
TNO has realized and integrated a cloud environment based on OpenStack in the TRIANGLE
testbed. This section describes how the physical and virtual infrastructure is set up and has been
configured.

The implemented cloud environments are running on a single hypervisor described in Section
10.1.2. The hypervisor hosts multiple clouds described in Section 10.1.3 and performs routing and
firewalling for their respective networks described in Section 10.1.4. The Juju models describing
the cloud configuration are found in Section 10.1.5. An overview of access to the OpenStack
Dashboard, command-line Client and REST APIs for using the cloud is given in Section 10.1.6,
while Section 10.1.7 gives an overview of all important used IP addresses. An overall overview of
the infrastructure is presented in Figure 95.

10.1.2 Hypervisor
Based on the instructions of the TRIANGLE project, the cloud environment has been installed on
a single server placed in the testbed location at Malaga University. To provide isolation between
the different types of nodes and physical machines usually found in a cloud environment, different
functional nodes such as the cloud controllers, compute nodes, storage nodes, networking nodes
and gateways, deployment managers and MANO orchestrators are configured to run as KVM
instances on the hypervisor server managed by libvirt. Overall, there are 3 types of KVM instances:

 Manually-deployed instances, instances that are installed manually from an ISO. These
nodes include Ubuntu MAAS and the DANE (note that DANE can and typically will be
instantiated as a part of the specific experiment).

 MAAS-deployed instances, these instances have not been installed manually, but are
installed through Ubuntu MAAS configuration and are later configured manually. These
instances include Juju and the MANO orchestrators.

 Juju-configured instances, these instances have been installed and configured fully
automatically through Juju models containing abstract configuration and functional linking
description. Juju employs Ubuntu MAAS to automatically install nodes with an operating
system prior to deploying configuration. The instances fully deployed through Juju consist
of the Juju-Controller itself that in turn manages the cloud environments, and all Controller,
Compute, Networking and Storage nodes found in each cloud.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 140/277

The hypervisor has 4 SATA hard disks, configured in 2 software RAID-10 arrays for reliability
purposes. The first array hosts the hypervisor software and configuration itself, while the second
array hosts the storage of the instances. For performance reasons, the TRIANGLE consortium
should consider upgrading this system to a two-array, four-hard disk hardware-based RAID system
based on SAS instead of SATA.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 141/277

Network
- neutron-gateway

Eno1: 10.12.0.42/24 – gw .1 Eno2/br102: 10.102.81.42/24
Libvirt Hypervisor

DANE
(*independent installation)

Bridge .245 – gw .1NAT KVM Host

Ubuntu MAAS

Juju
- installed itself through MAAS

- deploys nodes in Juju-models through
MAAS, configures through Juju-charms

.2 .3
KVM Host KVM Host

Juju-GUI
- hosts Juju web GUI

.251 (dyn)
KVM Host

Controller
- mysql

- keystone
- heat

- neutron-api
- nova-cloud-controller
- dashboard (horizon)

- rabbitmq-server

Compute
- Nova-compute

- Neutron-openvswitch

(dyn) (dyn)
KVM Host KVM Host

Storage
- Cinder
- Glance

MANO
- OpenSource Mano Release TWO

(installed through MAAS)

(dyn)

(dyn)

KVM Host

KVM Host

Infra: 10.20.2.1/24
Public: 172.20.2.1/24

*

Juju-model: controller

Juju-model: openstackX

VMs NSs

*

vRouter

IntNets
(VXLAN)

Qemu

iproute, iptables, brctl

(dyn) *

IntNets (VXLAN)

Figure 95 Architecture overview

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 142/277

Figure 96 Hypervisor configuration through virt-manager

Figure 97 Overview of nodes deployed through MAAS, cloud-related nodes are initiated and

controlled through Juju.

10.1.3 Clouds
The cloud environment consists on 3 different clouds, all running on the previously described
hypervisor. All clouds are running OpenStack Pike deployed through the Ubuntu MAAS and Juju

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 143/277

services described in Section 10.1.5. Due to historic reasons, the clouds have the following names
and functionality:

 Cloud5; the Stable cloud that can be used in production
 Cloud4; the Staging/Integration cloud in which we test and verify functionality before

moving them to the Stable cloud.
 Cloud3; the Development cloud for experimental testing of functionality before moving it to

Staging

10.1.4 Networks
The following networks with respective subnets are considered from the cloud environments.
Unless stated otherwise, the .1 IP address specify both the gateway and DNS server for that
subnet and all these networks exist at the hypervisor through a virsh virtual network. DNS requests
are forwarded to the UMA DNS server at 150.214.40.11 by the recursive DNS server dnsmasq
running on the hypervisor.

The following networks are exposed from cloud environment to the testbed network.

 Access Network - 10.12.0.0/24:
This is the access network used by the hypervisor to access and forward traffic towards
the Internet, only the main Network Interface Card (NIC) of the hypervisor has an IP
address in this range. Ideally, Network Address Translation (NAT) should be performed
by the main router of the TRIANGLE network, however, due to limited functionality of the
main router the hypervisor masquerades outgoing traffic on this NIC towards the Internet.

 TAP Network - 10.102.81.42:
This is the network used for the devices part of and under test by the TAP testbed. From
Cloud4 and Cloud5 instances can be fired up that are directly bridged into this network,
for this respectively the ranges 10.102.81.100-149 and 10.102.81.150-199 have been
reserved. Due to limitations in the main router of the TRIANGLE testbed, hosts besides
cloud instances in this network need to manually configure network routes via
10.102.81.42 (the hypervisor IP address) to access the following 4 subnets.

 OpenStack Infra - 10.20.2.0/24:
Through the Infrastructure network the VMs on which the cloud-infrastructure itself run
are configured and maintained.

 OpenStack Public5 (Stable) - 172.16.4.0/24:
This is the public network connected to the Stable cloud5, instances and floating IPs on
this network are dynamically addressable by hostname through the subnet
<hostname>.cloud5.morse.uma.es.

 OpenStack Public4 (Staging) - 172.16.3.0/24:
This is the public network connected to the Staging cloud4, instances and floating IPs on
this network are dynamically addressable by hostname through the subnet
<hostname>.cloud4.morse.uma.es.

 OpenStack Public3 (Development) - 172.16.2.0/24:
This is the public network connected to the Development cloud3.

The following internal networks exist for functional reasons within the OpenStack clouds; but are
not exposed outside the cloud environments or hypervisor. They exist as private VXLAN networks
within the cloud to interconnect instances with each other. Access to the exposed networks is
realized using virtual routers in OpenStack performing NAT.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 144/277

 OpenStack Internal5 (Stable) – Internal network on Stable Cloud5 interconnected to
network OpenStack Public5.

 OpenStack Internal4 (Staging) – Internal network on Staging Cloud4 interconnected to
network OpenStack Public4.

 OpenStack Internal3 (Development) – Internal network on Development Cloud3
interconnected to network OpenStack Public3.

 OpenStack TAP-Internal5 (Stable) - Internal network on Stable Cloud5 interconnected to
network TAP Network.

 OpenStack TAP-Internal4 (Staging)- Internal network on Stable Cloud4 interconnected to
network TAP Network.

Figure 98 Network overview of networks managed by lib-virt

10.1.5 Juju models describing the cloud infrastructure
The OpenStack clouds available at the TRIANGLE testbed are deployed and configured through
Ubuntu Juju, a service configuration and modelling tool that automatically configures servers
based on the abstract configuration expressed in a Juju model. Each functionality is expressed
and configured through a Juju charm, which can be mapped to a physical machine, a virtual
machine or an LXD container. Due to the ease of creating, reconstructing reconfiguring and
cleaning up functions, we have a very fine-grained distribution where each function described by
a Juju charm is mapped to its individual LXD container in a KVM instance or the root container of
a KVM instance if the charm’s functionality requires so. Figure 99 presents an overview of the Juju
model, containing of the following functions mapped to the following nodes:

 Controller: A node executing the functions related to management, configuration and
monitoring of the cloud, consists out of

o Cinder-API: Offers the API and scheduling functionality for the block storage service
and provides management of volumes.

o Heat: OpenStack Orchestration service, a non-ETSI aligned alternative for
MANO/NFV orchestration (note: a different solution, i.e., Open Source Mano, is
actually used as the orchestrator).

o Horizon: The OpenStack dashboard / web GUI.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 145/277

o Keystone: Identity, authentication and authorization service.
o MySQL: A Percona database cluster running MariaDB instances
o Neutron-API: Virtual network service, enabling network management, QoS, ACLs,

etc.
o Nova-cloud-controller: Cloud computing controller, scheduling, managing and

monitoring computing resources through its subservices nova-scheduler, nova-api
and nova-conductor.

o RabbitMQ: Advanced Message Queuing Protocol server used by all services to
interconnect.

 Compute:
o Nova-compute (root container): Provides hypervisor service to run instances on.

 Network:
o Neutron-gateway (root container): Provides central networking services such as

virtual routers to interconnect external (bridged or routed) networks and internal
(VXLAN) private networks through routing, firewalling and NAT.

 Storage:
o Cinder-volume (root container): Actual storage of LVM volumes on nodes, managed

by Cinder-API.
o Glance: Image registration and discovery service

 Subordinate functions: Elements that upgrade functionality of the main elements described
in the previous 4 categories.

o Neutron-OpenvSwitch: Provides Neutron-API and Nova-compute with Open
vSwitch functionality.

o NTP: Provides time synchronization to nodes.

The Juju model configuring the clouds is custom-made for the TRIANGLE testbed and in particular
contains the following additional configuration:

 L2 and L3 network connectivity between external and private internal (VXLAN) networks
using Open vSwitch SDN switches throughout.

 Separate networking nodes to provide gateway and floating IP address functionality.
 DNS integration such that nodes in the routed public networks can be accessed through

their hostnames <hostname>cloud[4-5].morse.uma.es.
 Additional non-ETSI aligned orchestration module through the OpenStack Heat package (note: a

different solution, i.e., Open Source Mano, is actually used as the orchestrator).
 Has split storage control and storage volume functionality for future scalability through

LVM.
 Has per-machine restriction and tag descriptions to automatically select the correct VMs

for their respective functions.
The full YAML export of the Juju model and the cloud-config scripts are available and are used to
automatically create all cloud configuration once a cloud is reinitiated.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 146/277

Figure 99 Juju model describing functional elements and their connections

10.1.6 Dashboard and API access
The cloud instances can be accessed and configured through both a Web GUI Dashboard
(Horizon) and service-specific APIs. This section presents an overview of the available
configuration services, section 10.1.7 gives an overall overview of the used IP addresses. Note
that these IP addresses will change when elements of the cloud model are deleted and reinstalled
through Juju. All addresses are publicly accessible from the networks described in section 10.1.4,
given that local static routing is configured when residing in the Access or TAP Network. When
connecting from outside the TRIANGLE Testbed network, an SSH Dynamic Tunnel (SOCKS
Proxy) towards a node within the network can be used.

OpenStack Dashboard

The easiest way to configure and administer projects, instances, networks, authentication, storage,
images, etc., is through the OpenStack Dashboard supplied by the Horizon package. It is
accessible through either http://<OpenStack-Dashboard> or https://<OpenStack-Dashboard>, with
the appropriate IP address selected from section 10.1.7. Annex 4 gives an introduction into the
usage of OpenStack Dashboard.

CLI Access

Additionally, all configurations can be applied through the OpenStackClient (OSC) command-line
client. OSC provides a shell interface with all configuration options available and is available under
the python-openstackclient package in most package repositories. A full documentation of OSC
can be found at [10]. In a nutshell, after installation the command openstack provides a shell that
auto-completes and gives information on the fields necessary to complete a command. The

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 147/277

following environment variables need to be set to connect to Stable Cloud5, which can be easily
saved in a local file admin-openrc5.sh that can be sourced through `. admin-openrc5`:

Table 50 admin-openrc5.sh

export OS_AUTH_URL=http://10.20.2.45:5000/v3

export OS_PROJECT_DOMAIN_NAME="default"

export OS_PROJECT_NAME="admin"

export OS_USER_DOMAIN_NAME="default"

unset OS_TENANT_ID

unset OS_TENANT_NAME

export OS_USERNAME="admin"

export OS_PASSWORD="admin"

export OS_REGION_NAME="RegionOne"

if [-z "$OS_REGION_NAME"]; then unset OS_REGION_NAME; fi

export OS_INTERFACE=public

export OS_IDENTITY_API_VERSION=3

unset OS_TOKEN

API Access

It is also possible to have programmatic access to the configuration of the OpenStack Cloud. In
fact, both the OpenStack Dashboard and the OpenStackClient rely fully on API access to read and
write OpenStack configuration. Additionally, API Access is for example used by the MANO
orchestrators (OSM) connected to the OpenStack clouds to administer the appropriate
configuration and is useful for custom environments to integrate with OpenStack. For example, we
have used direct API access in our sample TAP scripts to configure QoS parameters in OpenStack.

Annex 4 provides a short introduction of this API. A full overview of all OpenStack API
Documentation can be found at [11], we will give a short introduction to each API available in the
TRIANGLE clouds and how to operate those.

Additionally, the cloud configuration can be orchestrated from the MANO orchestrators based on
Open Source MANO (OSM) and the TAP client respectively described in sections 10.2 and 0.

10.1.7 Overall overview of IP addresses
The following services are accessible at the following IP addresses through the following
connection methods

Host Name IP addresses Connections Authentication
OpenStackCloud
(Hypervisor)

10.12.0.42
10.102.81.42

ssh://morse.uma.es:11300
ssh://<IP-Address>

morse+tno (Key-auth)

MAAS 10.20.2.2 ssh://TRIANGLE@10.20.2.2
http://10.20.2.2/MAAS

TRIANGLE:TRIANGLE

Juju 10.20.2.3 ssh://ubuntu@10.20.2.3 (Key-auth)
Juju-Controller 10.20.2.215 https://10.20.2.251:17070/gui/u/admin admin / Run `juju gui` at

Ubuntu Juju for pw.
DANE 10.102.81.245 ssh://morse.uma.es:11341

ssh://10.102.81.245
tno (Key auth)

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 148/277

OSM5 10.20.2.44 https://10.20.2.44:8443
ssh://ubuntu@10.20.2.44

admin:admin
(Key-auth)

For the Stable Cloud 5, the following services are deployed by Juju on 4 VMs labelled Compute05,
Controller05, Network05 and Storage05. On these nodes, Juju creates an LXD container per
service with its own IP address to allow fine-grained per-service configuration, deletion and
recreation. Access to these web and API services is explained in section 10.1.6. Logging into the
nodes through SSH is seldomly necessary as they are configured through the Juju model
“OpenStack5” through the Juju Web GUI at Juju-Controller. If SSH access is necessary to any of
these services, this is possible through the following command when logged into the Juju node:
`juju ssh -m openstack5 <unitname>`, where the unit is build up from the servicename followed by
its instantiation (generally “/0” when it is the first instantiation).

Service Name Location IP address

Nova-Compute Root@Compute05 10.20.2.30

(Empty) Root@Controller05 10.20.2.30

Cinder-API LXD@Controller05 10.20.2.20

Heat LXD@Controller05 10.20.2.41

Keystone LXD@Controller05 10.20.2.45

MySQL LXD@Controller05 10.20.2.40

Neutron-API LXD@Controller05 10.20.2.21

Nova-Cloud-Controller LXD@Controller05 10.20.2.47

OpenStack-Dashboard
(Horizon)

LXD@Controller05 10.20.2.43

RabbitMQ-Server LXD@Controller05 10.20.2.27

Neutron-Gateway Root@Network05 10.20.2.14

Cinder-Volume Root@Storage05 10.20.2.18

Glance LXD@Storage05 10.20.2.34

The previous IP addresses may change when a cloud or elements of the clouds are deleted and
reinitiated through Juju. The most recent IP addresses can be found through the Juju Web GUI at
Juju-Controller or by running the command ̀ juju status -m openstack5` on the Juju node itself. Due
to their volatile nature, we have not included all service IP addresses of the Development Cloud 3
and Staging Cloud 4.

10.2 MANO – Management and Network Orchestration (TNO extension Release 3)
In this section we describe in more details the selected orchestrator platform being ETSI OSM
(Open Source MANO [12]) in the context of the TRIANGLE testbed. To make the document self-
contained, we provide some brief information about more generic aspects of MANO like

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 149/277

architecture or deployment, however, the reader is referred to the OSM documentation for more
extensive coverage of these topics.

10.2.1 Functions
The Management and Network Orchestration (MANO) stack allows for rapid deployment of
Virtualized Network Functions (VNFs), their flexible configuration, lifecycle monitoring and
decommissioning in order to automatically operate a potentially complex Network Service (NS). A
model driven approach is taken to describe VNFs and NSs. MANO enhances interoperability with
other components in the system such as Virtual Infrastructure Managers (VIMs) or Software-
Defined Networking (SDN) controllers and is able to integrate with multiple instances and variants
(solutions such as OpenStack, VMware ESXi, etc) of them.

10.2.2 Architecture
Open Source MANO (OSM (ETSI OSM, sd)) has an ambition to be a reference implementation of
the ETSI standards. The general architecture is presented on Figure 100, extracted from [13].
Please refer to this document for the detailed architecture description.

Figure 100 OSM mapping to ETSI NFV MANO

10.2.3 Deployment
OSM deployment on the TRIANGLE testbed was performed using the binaries for Release TWO
(a stable release during execution of the TRIANGLE Open Call 1 project), following the procedure
from [Section 10.1.2] [14]. A dedicated Ubuntu 16.04 Virtual Machine (OSM5, 10.20.2.44) was
deployed and configured to use (non-nested) LXD containers. As a result of the installation, three
LXD containers are created in the OSM host: RO (Resource Orchestrator), VCA (VNF
Configuration and Abstraction), and SO-ub (hosting Service Orchestrator and the User Interface),
as shown in Figure 101 (source: [14].) and Table 51.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 150/277

Figure 101 State of an OSM VM after OSM installation

Table 51 LXD containers after OSM installation

ubuntu@OSM5:~$ lxc list

+-------+---------+--------------------------------+------+------------+-----------+

| NAME | STATE | IPV4 | IPV6 | TYPE | SNAPSHOTS |

+-------+---------+--------------------------------+------+------------+-----------+

| RO | RUNNING | 10.28.33.48 (eth0) | | PERSISTENT | 0 |

+-------+---------+--------------------------------+------+------------+-----------+

| SO-ub | RUNNING | 10.28.33.163 (eth0) | | PERSISTENT | 0 |

+-------+---------+--------------------------------+------+------------+-----------+

| VCA | RUNNING | 10.44.127.1 (lxdbr0) | | PERSISTENT | 0 |

| | | 10.28.33.151 (eth0) | | | |

+-------+---------+--------------------------------+------+------------+-----------+

Connectivity to OpenStack was then configured, following the procedure from [Section 10.2.2] [14],
with the appropriate parameter for the Keystone address being http://10.20.2.45:5000/v2.0

10.2.4 Interfaces and integration with TAP

RO REST interface – Resource Orchestrator

The OSM Resource Orchestrator exposes the northbound REST interface which is documented
in [15]. It allows, among others, to perform actions over tenants, data-centers, instances etc.

SO REST interface – Service Orchestrator

The OSM Service Orchestrator exposes the northbound REST interface which is documented in
[16]. It allows, among others, to perform actions such as uploading service descriptors or
instantiating a Network Service. At the time of writing this document the only available version
refers to OSM Release ONE while the deployed version was Release TWO. While no thorough
verification was performed, we have noticed some problems in running the examples (e.g.,
instantiating the network service using "nsd-ref" resource fails). As a partial remedy for these kind
of problems, we decided to make a small modification in OSM Client (Section 0) which under the
hood also uses REST. The client now prints a very verbose output which includes the REST URL,
request headers, json payload, etc. which can in turn be used to compose the REST commands
used for example by TAP script (Section 0).

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 151/277

CLI – Command Line Interface

The command line interface client is available for OSM MANO. The following sections describe
the OSM client in more details and the modifications made to in the next section.

10.2.4.1.1 OSM client

The OSM community provided a python-based OSM Command Line Interface client. While for
Release THREE it is installed by default, for Release TWO a manual installation is needed,
followed by setting correct environmental variables, see both Table 52 and Table 51. The client
was installed on the VM instance OSM5 (10.20.2.44) and the environmental variables were put for
the convenience to osmvars.sh file (usage: source osmvars.sh)

Table 52 OSM Client installation, configuration and verification

sudo apt install libcurl4-gnutls-dev libgnutls-dev

sudo pip install git+https://osm.etsi.org/gerrit/osm/osmclient@v2.0.2

export OSM_HOSTNAME=10.28.33.163

export OSM_SO_PORT=8008

export OSM_RO_HOSTNAME=10.28.33.48

export OSM_RO_PORT=9090

osm vim-list

+----------------+--------------------------------------+

| vim name | uuid |

+----------------+--------------------------------------+

| openstack-site | 811971ae-c46a-11e7-b9ee-00163e1024a7 |

+----------------+--------------------------------------+

10.2.4.1.2 OSM client modifications

OSM client can be modified to display a very verbose output, helpful in inspecting REST calls, see
Table 53. While useful, please note this is just a temporary fix and a more elegant solution (e.g.,
adding “verbose” switch) can be developed. Furthermore, if the descriptor was created in the GUI
(see Section 0 and Section 17.2 in Annex 5), it is likely that it contains additional “meta-
information”, which is necessary for the graphical layout of the service but has no infrastructural
function. This information, if appearing in the json file submitted with the REST POST call to start
a network service will cause an error and thus has to be removed. This is not a result of our
modification but rather an inconsistency in the CLI client and GUI. Our TAP plug-in verifies the
existence of the meta-information field, however does not remove it if present. See Table 54 for
the details, with the meta-information part marked in red.

Table 53 OSM Client modifications

git clone -b 'v2.0.2' --single-branch https://osm.etsi.org/gerrit/osm/osmclient

#in the file

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 152/277

~/osmclient/osmclient/common/http.py

#in the function

def _get_curl_cmd(self, endpoint):

#the following line was added to allow for verbose output

 curl_cmd.setopt(pycurl.VERBOSE, True)

#to see the json content add around line 79 the print statement

 jsondata = json.dumps(postfields_dict)

 print jsondata

#to rebuild

~/osmclient$ sudo pip install . --upgrade

#to verify

$ osm vim-list

* Trying 10.28.33.163...

* Connected to 10.28.33.163 (10.28.33.163) port 8008 (#0)

* found 148 certificates in /etc/ssl/certs/ca-certificates.crt

[output omitted]

Table 54 Using OSM client with GUI generated descriptor may cause an error

ubuntu@OSM5:~/osmclient$ osm ns-create --ns_name rest_test13 --nsd_name nsd_3 --vim_account openstack-site

--admin_status ENABLED --ssh_keys piotr-zuraniewski-tno-nl

* Trying 10.28.33.163...

[output omitted]

* Connection #0 to host 10.28.33.163 left intact

{"nsr": [{"short-name": "rest_test13", "ssh-authorized-key": [{"key-pair-ref": "piotr-zuraniewski-tno-

nl"}], "description": "default description", "om-datacenter": "811971ae-c46a-11e7-b9ee-00163e1024a7",

"nsd": {"id": "nsd_3", "constituent-vnfd": [{"member-vnf-index": 1, "start-by-default": "true", "vnfd-id-

ref": "ubuntu_2c_2G_1iface_vnfd"}], "meta":

"{\"containerPositionMap\":{\"1\":{\"top\":135,\"left\":435,\"right\":685,\"bottom\":190,\"width\":250,\

"height\":55},\"a8d499e9-ec0c-452b-bcb6-

6a0e8880fa67\":{\"top\":30,\"left\":135,\"right\":385,\"bottom\":85,\"width\":250,\"height\":55},\"vld-

1\":{\"top\":300,\"left\":447.5,\"right\":697.5,\"bottom\":338,\"width\":250,\"height\":38}}}", "name":

"nsd_3", "vld": [{"mgmt-network": "false", "vnfd-connection-point-ref": [{"vnfd-connection-point-ref":

"eth0", "member-vnf-index-ref": 1, "vnfd-id-ref": "ubuntu_2c_2G_1iface_vnfd"}], "name": "vld-1", "id":

"vld-1"}]}, "admin-status": "ENABLED", "id": "21e7c5ac-f60e-11e7-bedf-5254009bd772", "name":

"rest_test13"}]}

[output omitted]

* Connection #0 to host 10.28.33.163 left intact

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 153/277

failed to create ns: rest_test13 nsd: nsd_3 result: {u'error': u'Resource target or resource node not

found'}

GUI – Graphical User Interface

OSM also provides a graphical interface (called launchpad), in our case accessible under link
https://10.20.2.44:8443/launchpad/

The GUI simplifies both descriptors design of descriptors as well as managing their catalogue, ssh
keys deployment and network services instantiation, see Figure 102. From our experience,
Launchpad GUI (service instantiate part) is however not always the best source of information in
case of instantiation errors. Frequently, only “Failed” message (along with UUID of the instance)
is given and for more insights MANO logs need to be inspected, see Section 10.2.6 for comments
on troubleshooting.

Figure 102 OSM GUI sample screenshot

TAP integration

We have integrated MANO with the TAP system. The detailed description of the steps along with
the sample test plan is in Deliverable 3.4. Note, due to the bug/limitation of the SSH.NET library
regarding implemented HostKey algorithms it is not possible to connect to openSSH servers in
Ubuntu 16.04.4 and later (ssh_dispatch_run_fatal: Connection to 172.16.4.13: error in libcrypto).
Modern servers offer ssh-rsa, rsa-sha2-512, rsa-sha2-256, ecdsa-sha2-nistp256, ssh-ed25519
while SSH.NET offers only ssh-rsa and (depreciated) ssh-dss. We have tested TAP plug-in with
Ubuntu 16.04.3 (earlier version should also be supported).

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 154/277

10.2.5 Instantiation
Network service instantiation is performed using the Launchpad: Instantiate page (see Figure 103)

Figure 103 Instantiation

10.2.6 Troubleshooting
Most of the useful logs from MANO are stored on the LXD container running the given service
(such as Resource Orchestrator). A good point to start with debugging is to log in to the OSM VMs
(ssh ubuntu@10.20.2.44) and pull the Resource Orchestrator log (lxc file pull
RO/var/log/osm/openmano.log .). The detailed description of the typical operations can be
found in [16]. From the GUI, Logging and Debug sections are available, see Figure 104 and Figure
105

Figure 104 Logging and debug via OSM GUI

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 155/277

Figure 105 Logging and debug via OSM GUI

Annex 5 provides a sample workflow which can be used by the experimenter using MANO
integrated with TAP.

10.3 MEC (Mobile Edge Computing) (CNIT Genova Extension Release 4)
This section describes the extension of the TRIANGLE testbed to support and to host Mobile Edge
Computing (MEC) services. The extension of the TRIANGLE testbed towards MEC technologies
allows experimenters to upload the “mobile edge” counterpart of the applications running on User
Equipment (UE) to the TRIANGLE facilities, and consequently testing and validating the entire
ecosystem in a highly flexible and controlled environment. The integration regards both the
configuration tools available for the experimenters and the extension of the TRIANGLE testbed
towards MEC.

The concept behind Mobile Edge Computing (MEC) consists in the deployment of computing and
storage resources in the premises of the Telco Operators instead of within remote datacenters as
envisaged by the Cloud Computing paradigm. This simple shift in the environment allows not only
to lower latency thanks to the reduced distance with the users, but also to provide more degrees
of freedom thanks the knowledge of user location and the network data available within the Telco
premises.

As a result, Telco Operators can support MEC services characterized by real-time responsiveness
and by a high degree of personalization of networking, billing and features that become feasible
thanks to the information related to the knowledge of user location and the network data available
within the Telco premises. Moreover, new business opportunities can be created by exploiting the
more rapid deployment of applications and services to enable vertical industries to work on top of
pre-existing infrastructure domains.

This extension has the goal of integrating the MEC paradigm in the TRIANGLE testbed. In this
implementation, MEC services are composed of chains of Virtual Machines (VMs) potentially
deployed in different Points of Presence (PoPs). The communication and information exchanged

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 156/277

among VMs of the same service chain are provided by overlays called Back-end Networks (BN),
while a Personal Network (PN) is associated to each User Equipment (UE) and is used to
interconnect the UE to the associated service chains.

The deployment of such services in TRIANGLE requires the testbed to be extended according to
the high-level representation in Figure 106. Extensions regard both the user interface and the
testbed architecture itself.

Figure 106 Deployment of MEC service instances in the TRIANGLE testbed.

In more detail, from the experimenters’ point of view, there is a need to, on the one hand, upload
the VMs composing the services and defining the service chain structure and requirements and,
on the other hand, to design the test steps and execution. In order to support the tests, the testbed
needs to provide additional capabilities integrated with the Radio Access Network (RAN) for traffic
identification/isolation and management. The following sections provide technical details on the
integration of the experimenters’ interface and on the testbed, respectively.

The Annex 11 contains the user guide for MEC experimenters.

10.3.1 Test Creation and Deployment
Experimenters will deploy their tests in two phases:

 A Test Configuration phase, in which experimenters define their MEC services: upload their
virtual machines, compose the service chain, and specify latency requirements and policies
to be used during tests.

 A Test Orchestration phase, to define the test setup (e.g., number of PoPs, network latency
among them and towards base-stations, etc.) and perform lifecycle operations, such as
instantiate/de-instantiate, migrate, etc.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 157/277

The service chain definition will be made available by means of a dashboard similar to the one
provided by OpenStack [48]. Then, the service chain is instantiated and test steps can be defined
and run in the TRIANGLE testbed by means of a Keysight Test Automation Platform (TAP) plugin.
The testbed extension will enable the proper run of such tests and the management of the whole
MEC service lifecycle. These two phases are described as follows:

Configuration Phase: DevStack

For the realization of the interface allowing experimenters to create their MEC service chains,
DevStack [50], a GitHub-based deployment of OpenStack that can run in a VM, has been used.
The user interface is provided by means of the Horizon dashboard.

Once connected to the dashboard, the experimenters will be able to upload their VMs, connect
them to the UE PN and among themselves through BNs, and, if needed, to assign additional
constraints to each VM. For example, in Figure 107, we can see the assignment of a “proximity
class,” which represents the allowed maximum distance (in terms of latency delay) from the UE.

Figure 107 Scrrenshots of the OpenStack Horizon dashboard

This configuration phase is treated as a step in the TAP plugin and is managed by means of
specific scripts that allow to refresh the user information after each test to prepare the system for
another experimenter, as described in the next section.

Orchestration Phase: TAP

A Test Automation Platform (TAP) plugin for configuring and running the tests has been designed.
In more detail, the plugin allows the experimenters to define the testbed configuration, e.g., the
initial server and the service chain placement, and additional performance constraints, such as,
for example, network latency between service and UE or towards base-stations. Then, the plugin
is also used to perform the lifecycle operations on the service chains, such as instantiate/de-
instantiate, migrate, etc., by means of TAP test steps. The plugin exposes to the experimenters
some basic operations that are used to access the corresponding OpenStack APIs. In the current
version, the TAP plugin developed for our extension allows to start, stop, suspend and resume
individual VMs, along with providing the authentication management. Additional operations related
to migration can be added in the case of more than one server made available in the TRIANGLE
testbed for the MEC extension. As final operation, a script is provided to cleanup the system and
make it available for the following experiment.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 158/277

10.3.2 MEC Integration in the TRIANGLE Testbed Release 4
As highlighted by the ETSI MEC working group, the primary objective of the MEC technology is to
dramatically reduce latency times throughout high service continuity levels [51]. To achieve this
objective, IP packets need to be forwarded to the MEC applications meant to handle the traffic,
which are typically hosted locally on the MEC platform or on a remote server. However, as the
current 3GPP 4G architectural specification does not allow exposing its reference points externally,
additional functionalities are required to foster the interaction between the edge and the mobile
network.

In this respect, additional capabilities have been included to monitor the presence and the position
of a specific UE, and intercept its traffic flowing from the Evolved Packet Core (EPC), and more
specifically from the Packet Data Network Gateway (P-GW) to realize the MEC attach points at
the SGi interface. This type of deployment is considered suitable for some of the 5G use cases,
such as Mission Critical Push to Talk (MCPTT), and M2M communications [52].

The integrated functionalities are implemented in a single VM as shown in Figure 108. Bearers are
defined per UE, including VLAN tags, and are managed by means of a REST interface. The
Interception is in charge of intercepting messages from the SGi interface and parse the information
needed to univocally recognize the UE, to identify the eNodeB where the UE is attached and
handover events, as well as to understand the configuration of its bearers. If the intercepted
packets do not belong to the service of interest, they are released without performing any further
operations on them. Then, a Virtual Gateway is used to simply forward the packets to the
corresponding service.

Figure 108 Integration of MEC functionalities in the TRIANGLE testbed

10.4 DANE (DASH-Aware Network Element) (TNO extension Release 3)
TNO’s extension adds a DANE (DASH-Aware Network Element) in the TRIANGLE testbed. The
DANE is a recently standardised network element [41][42].whose aim is to provide network
assistance to video streaming clients supporting the MPEG-DASH (or the 3GP-DASH) protocol
[42][43]. Specifically, the DANE supports the SAND protocol [41][42], which enables it to provide
quality-related assisting information to the streaming clients, asynchronously using Websockets.
Providing this information to clients reduces the chance of freeze events and of frequent switches
between low and high video streaming bitrates.

A DNS entry is configured for the DANE (“http://dane”), which runs on the “local servers” of the
TRIANGLE testbed and implements the “Consistent QoS / QoE” profile defined in [42]. In

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 159/277

particular, the DANE waits for Websocket connections from streaming clients on port 9000, and is
enabled to receive a “SharedResourceAllocation” message from connected streaming clients,
specifying a list of bitrate values corresponding to different bitrates in which a video stream can be
provided by the streaming server. Based on information about the bandwidth available to the UE
in the RAN, the DANE makes a decision with respect to which video stream bitrate the streaming
client can support, and communicates this information to the client via a
“SharedResourceAssignment” message. As the bandwidth available to the UE in the RAN
changes, the DANE recalculates the corresponding video streaming bitrate that the client can
support, and communicates it to the client again via a “Shared ResourceAssignment” message.
Figure 109 pictures the DANE within the context of the TRIANGLE testbed, including a streaming
server offering DASH content and a VR streaming application consuming it.

Figure 109 SAND architecture within the TRIANGLE testbed, including DANE, DASH streaming

server and DASH VR app

As can be understood, the DANE needs to obtain an estimation of the bandwidth available to a UE
in the RAN at any given moment. This mechanism is not currently described in any standard and
it is left up to the eNodeB and DANE vendors’ discretion. In the TRIANGLE testbed, this
mechanism is enabled as follows. The DANE exposes a REST API that can be used to set the
bandwidth value. The REST API is invoked within a “test scenario” executed via the Core
Sequencing Engine of TAP Figure 110. In fact, for each test scenario, the average bandwidth that
the UE is expected to achieve has been previously computed via measurements with iperf.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 160/277

Figure 110 Setting the DANE’s bandwidth within a TAP’s test scenario

10.4.1 Installation
The DANE software library can be installed by issuing the following command:

python setup.py install

10.4.2 Running
After installation, the DANE can be run by invoking the script installed:

dane

10.4.3 SAND support

We have implemented the following messages from the MPEG-SAND protocol:

Table 55 Messages from MPEG-SAND protocol

Device Message Description

Dane
DaneCapabilities

Informs the video client on the messages supported
by this DANE.

 SharedResourceAssignment
Informs the video client on the operating point (i.e.
DASH representation) allocated to it by the DANE.

Client ClientCapabilities
Informs the DANE on the messages supported by
this video client.

SharedResourceAllocation

Informs the DANE that this client wishes to receive
resource assignment. Furthermore, it informs the
DANE of the operating points (i.e. DASH
representations) it supports.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 161/277

10.4.4 Protocol

The following diagram illustrates the operation of the SAND protocol, and the messages used to
exchange bandwidth information.

+-----------+ +-----+
|DASH client| |DANE |
+-----+-----+ +--+--+
 | |
 | WebSocket connect |
 +--> |
 | |
 | ClientCapabilities |
 +--> |
 | |
 | DaneCapabilities |
 | <---+
 | |
 | SharedResourceAllocation |
 +---> |
 | |
 | SharedResourceAssignment |
 | <---+
 | |
 + +

10.4.5 DANE REST API
The DANE REST API runs on port 8088.

Setting the available bandwidth

curl -X PUT -d bw=my_bandwidth http://dane:8088/api/bandwidth

Sets the available bandwidth to my_bandwidth.

Example:

curl -X PUT -d bw=12345 http://dane:8088/api/bandwidth

Getting the available bandwidth

curl -X GET http://dane:8088/api/bandwidth

Returns the available bandwidth as known by the DANE.

Resetting the DANE

curl -X POST http://dane:8088/api/reset

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 162/277

Resets the DANE state, i.e. disconnect all clients and reset the available bandwidth.

10.4.6 Dependencies
The DANE software depends on the following PyPI packages:

• pytz, for formatting datetime as requested in the SAND protocol.
• autobahn, a WebSocket library in Python.

10.4.7 Metrics Database

10.4.8 Introduction
Webserver with API for the storage and retrieval of logs created by a dash.js client. This server
demonstrates how dash.js client metrics can be logged and retrieved. Note that the storage is in-
memory, and will be lost on a restart/crash.

10.4.9 Running
Before running, install project dependencies by running:

npm install

The program can be run by the following command:

npm start

The exposed port can be configured by setting the PORT environment variable before running the
program.

10.4.10 Docker
The docker image can be built by invoking:

docker build -t metricsdb .

10.4.11 REST API
Logging metrics data Metrics data can be logged by making a POST request in the following
way:

curl -X POST http://dane:8081/{uuid}/MetricsData

where {uuid} should be an id which uniquely identifies a client corresponding to the metrics.

Logging quality data Quality data can be logged by making a POST request as follows:

curl -X POST http://dane:8081/{uuid}/QualityData

where {uuid} should be an id which uniquely identifies a client corresponding to the metrics.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 163/277

Retrieving data Data can be retrieved by making a GET request to the same endpoint as used
for logging data. The client uuids which are currently in the database can be obtained by making
a GET request as follows:

curl -X GET http://dane:8081/ids

Dumping data The current state of the log can be dumped by making a POST request in the
following way:

curl -X POST http://dane:8081/dump/{name}

where {name} should be a prefix of an indexed set of logs.

10.4.12 Metrics Visualisation
This service will display from a server hosting dash.js metrics at these endpoints:

• <url>/QualityData
• <url>/MetricsData

Data will be polled every second, and displayed on a graph.

10.4.13 Fake client swarm

10.4.14 Introduction
A simple service to launch and manage multiple SAND clients.
These clients use a weight of 5 by default. The default port is 10260.

10.4.15 Commands
In order to kill all clients, a POST request should be made as follows:
curl -X POST http://dane:10260/reset

Spawning new clients can be done by issuing a PUT request in the following way:

curl -X PUT http://dane/spawnClients/{count}

where {count} should be replaced by the desired number of new clients.

10.4.16 Obtaining logs
The logging server provides an overview of all log files at its root endpoint. The URL to view the
logging directory is as follows: http://dane:10000/

When operating, the DANE logs its communication with the clients, and provides details on its
bandwidth assignment algorithm. The log file can be accessed by navigating to the log service
URL. From the TAP machine, this will be located at:

http://dane:10000/dane.log

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 164/277

Logged metrics can be dumped when the Metrics database service is running. Assuming the id
’test’ was used to dump a metrics database for the first time, this file can be obtained at:

http://dane:10000/test-0.log

10.4.17 Default port assignments
The ports on the DANE VM are assigned as follows:

Service Sub-service
Container

port
Host port

DANE SAND WebSocket 9000 90000

 REST 8088 8088

Fake SAND client REST 10260 10260

Web client HTTP 8080 8080

Metrics database REST 3000 8081

Metrics viewer HTTP 80 8082

Log web service HTTP 10000 10000

10.5 Video quality-of-experience assessment extension (Streamowl extension Rel.
4)

The extension provides an Android application and the appropriate interfaces to assess the user-
perceived quality of video streaming services in mobile devices. This is achieved by both analyzing
the displayed video (in terms of the pixels of the captured frames on screen) or by analyzing the
network traffic.

The concept of the extension is depicted in Figure 111: the mobile device requests the video from
a video streaming service (e.g. YouTube, Netflix, BBC, etc.). The video is played back either via
an embedded video player, which provides the required libraries (e.g. using the YouTube player
API) for monitoring the video performance, or the native video player of the application/service is
employed and the KQIs of the video streaming performance are extracted by processing the video
packets at the network level using the StreamOwl quality monitoring probe and/or by capturing in
the video screen the displayed video.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 165/277

Internet

Web-page with
embedded player

QoE
parameters

Triangle 5G testbed

StreamOwl quality
monitoring probe

Network
KPIs

Figure 111: Concept of the extension for adaptive video streaming performance evaluation.

The Android App can be controlled in non-interactive fashion to perform automated tests using
adb shell to initiate actions in the application. The following actions are supported through
broadcast receiver message (which are also provided as individual steps in the provided TAP
plugin):

 Start capturing of network video traffic: this function starts the packet capturing process to
record all incoming and outgoing network traffic in a pcap file. A rooted device is required
for capturing from the network interface. At the same time, the video screen is recorded,
using the native display resolution of the mobile device, using a high bitrate (~20mbps).
The adb command is:

 adb shell am broadcast -a
com.example.streamowl.onlinevideotester.USER_START_RECORD

 Open the video player to play the requested video: in the app, we assume that the popular
OmxPlayer is used to play the video, but any compatible video player can be used. The
video player is employed to fetch the video from the requested source and display the
video:

adb shell am start -n com.mxtech.videoplayer.ad/.ActivityScreen -d
http://playertest.longtailvideo.com/adaptive/oceans_aes/oceans_aes.m3u8

 Stop the video playback and stop capturing the network video traffic. In this step, the video
player is stopped, the video recording is stopped, and two files are stored in the mobile
device: a) the video recording which contains the video that was played back during the
experiment, and the pcap file which contains the network packets of incoming and outgoing
traffic. These two files will be used at the next step for the assessment of video quality.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 166/277

adb shell am broadcast -a
com.example.streamowl.onlinevideotester.USER_STOP_RECORD

 The two files (avi video file and pcap file with network traffic) that are generated in the
previous step are uploaded to a central remote ftp server (which can be configured via the
settings of the app) for remote processing and estimation of the video quality.

adb shell am broadcast -a
com.example.streamowl.onlinevideotester.USER_FILE_UPLOAD

When new files are uploaded to the central database, the video quality estimation software is
automatically called to estimate the video quality, using the following KPIs:

 Startup delay (or time-to-first-picture)

 Number of video stallings

 Total duration of video stallings

 Mean Opinion Score (MOS)

MOS is an holistic metric that reflects the overall user experience and his/her satisfaction from the
video quality. The results are presented in a dashboard which provides intuitive and descriptive
information about the quality of the streaming service, as depicted in the Figures below. Thus, the
user of the platform can configure (either in the mobile device or the provided TAP plugin) the URL
of the video stream that needs to be streamed, and each step can be followed independently of
the others.

Figure 112: Dashboard for the video quality performance monitoring.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 167/277

Figure 113: Detailed session information of the quality monitoring dashboard.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 168/277

11 Additional features for testing

11.1 GPS Emulation
Support for GPS Emulation is an incipient need. Making possible to run non-static scenarios would
allow to test more realistic situations that the devices will have to face: continuous changes of
location, speed, etc. In addition, there are many applications that require dynamic scenarios for
testing correctly such as obviously those related to navigation and location systems, sport and
fitness tracking apps, m-health applications, etc.

11.1.1 USRP
The main component of the GPS signal emulation system is the Universal Software Radio
Peripheral (USRP), which is a particular software-defined radio (SDR) platform.

The USRP is a family of boards for radio software implementation, designed and sold by Ettus
Research, a company that belongs to National Instruments. It was specially designed with the main
purpose to provide an affordable family of hardware for the implementation of SDR systems. As it
was designed to ease the developing of low-cost SDR applications, there are plenty of open-source
tools that can be used to control the USRP such as the GNU Radio platform or free resources
(libraries or schematics of the USRP boards) available in the official Ettus website.

Among other advantages, this hardware allows the design of RF applications from DC to 6GHz,
including the possibility of developing multiple antenna (MIMO) systems. It also incorporates
AD/DA converters, an interface for signals in RF and a FPGA which is responsible for the
processing and conversion of the signal to different frequencies. After the signal has been
processed and the data has been sampled by the FPGA, the information is sent to the computer
via USB.

Specifically, the USRP used in TRIANGLE is the USRP B210. This platform belongs to the family
of USRP Bus Series, and they are characterized by having high-speed USB 3.0 connection for
streaming data to the host computer. Besides this, it also includes the AD9361 RFIC direct-
conversion transceiver, which provides up to 56 MHz of real-time bandwidth, and an open and
reprogrammable Spartan6 FPGA. With all these characteristics, it allows the configuration of 2
transmitters and 2 receivers (half or full duplex), to implement a coherent 2x2 MIMO system, and
a modifiable ADC/DAC sampling rate of 12 bits. Figure 114 shows how to connect the RF output
of USRP to the UE GPS antenna.

In addition, it includes the possibility of adding daughter boards that would expand its functionality
and make it configurable for most of the signal spectrum.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 169/277

Figure 114 Connecting USRP output to the UE GPS antenna

GNU Radio

GNU Radio platform is a free and open-source software development toolkit that provides signal
processing blocks to implement software-defined radio systems. Among other advantages, what
makes GNU Radio special is that includes a graphical and friendly environment in which
applications can be implemented by using these predefined blocks (filters, synchronization
elements, equalizers, modulators and demodulators, encoders, decoders, etc.). Also, this platform
provides mechanisms to connect and manage the communication and transmission of data
between different processing blocks.

Another advantage of GNU Radio is that the implementation of the processing blocks themselves
or more specific applications, could be programmed using Python by means of the use of GNU
Radio’s libraries, which are implemented in C ++.

Besides, using GNU Radio the USRP can be configured using the UHD driver, through which
different parameters can be configured such as the choice of the antenna, transmission frequency,
gain and also decimation and interpolation factors.

GNU Radio runs on Linux, Mac and Windows platforms and since it is an open-source tool, there
are a huge number of applications already implemented and freely available on the Internet.

UHD (USRP Hardware Driver)

The UHD is the driver created by Ettus Research for application development on all USRP
products. It also provides the mechanisms that make possible the interoperability between different
USRP families. This driver, together with GNU Radio offers a simple interface to use it for the
control of the USRP.

This driver is also based on an open-source software and it is available on Linux, Windows and
MAC OS. The aim of UHD is to provide an API (Application Programming Interface) as well as the
driver needed to control the USRP. UHD offers cross-platform support for multiple industry
standard development environments and frameworks, including RFNoC, GNU Radio, LabVIEW
and Matlab/Simulink, but it also offers a stand-alone mode (no operating system is required to run)
through the API, programming directly on the UHD. For the stand-alone mode, it is important to
know that both the driver and the firmware of the UHD are programmed in C/C++ whereas Verilog
is the one used for the control of the FPGA.

Through UHD is how in this system USRP’s parameters such as gain, transmission frequency,
sample rate and the number of bits of the I/Q modulation can be modified.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 170/277

11.1.2 GPS emulation with USRP

Software-Defined GPS Signal Simulator

Software-Defined GPS Signal Simulator (GPS-SDR-SIM) is an open-source programme available
in the GitHub platform. Under MIT license, this software generates GPS baseband signal data
streams, which can be converted to RF using software-defined radio platforms, such as bladeRF,
HackRF, and USRP. Despite the word “simulator” in its name, what this tool actually does is not a
simulation of a GPS signal but an emulation of it, it really generates a GPS signal which can be
received by a GPS receiver.

In the first place, to generate a signal the user has to specify the GPS satellite constellation through
a daily GPS broadcast ephemeris file (brdc). These files are available on the Internet
(ftp://cddis.gsfc.nasa.gov/gnss/data/daily/) and updated every day.

Using these files, the program generates the calculations of the pseudo-distances and Doppler
frequencies for the GPS satellites in view. These data are then used to generate digitized I/Q
samples for the GPS signal in the L1 C/A band (the civil band), which are then converted into RF
signals using SDR platforms that can provide a quadrature modulation in this band, such as the
USRP in this case.

A great variety of parameters can be configured using this program in addition to the ephemeris
file, which is a mandatory parameter. It also enables to specify the scenario date, the duration of
the emulation, the possibility of signal emulation in static or dynamic mode, to set a specific
sampling frequency of the USRP or the number of bits of the I/Q modulation, and even the option
to skip the ionospheric delay that the code includes for spatial scenarios.

The following command in a Linux operating system, would use this program to emulate a signal
in a static scenario with the parameters that are shown (the ephemeris specific file, coordinates,
duration, sample rate and number of bits for modulation).

$./gps-sdr-sim -e efemerides1703.17n -l 50,30,15 -d 120 -s 2500000 -b 16

GPS-SDR-SIM-UHD

The repository includes a python script to transmit the samples to the USRP in a very simple way.
This program uses GNU Radio to control the parameters of the USRP and allows the control of
the board through the execution of a command line in which different options can be customised.

The program takes as an argument the simulation file created before and sends it to the USRP
with the configuration required.

$./gps-sdr-sim-uhd.py -t gpssim.bin -f 1575420000 -x 0 -s 2500000 -b 16

In the command line above, the program takes the simulation file that had been created previously
and sends it to the USRP with the GPS civil band transmission frequency, 0 dB gain which should
be good enough to receive the signal, sample frequency of 2.5 MHz and 16 bits for the I/Q
modulation. The last two parameters must be exactly those for the USRP B210, otherwise the
GPS receptor would not receive the signal correctly.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 171/277

KML to CSV

The format used to save customized routes created by Google Earth or Google Maps is a KML
(Keyhole Markup Language) file. For this reason, a program that enables the use of this type of
files on the GPS emulator has been implemented.

Introducing just the name of a specific route saved in a KML file, the program extracts the
coordinates of the route (leaving aside the rest of the data this file contains) and makes possible
the conversion into the appropriate format for the emulator to generate the signal simulation file.

This program also allows the configuration of the speed of the designed route for its emulation.
What the program actually does, is the interpolation of the saved points of the route. The number
of new points interpolated depends on the speed, (the slower it is the more number of new points
are needed).

To calculate the interpolated points a spherical-Earth model has been used, ignoring ellipsoidal
effects. This gives errors typically up to 0.3% which has been considered accurate enough for this
purpose.

Besides this, it also enables to configure a time in which a fixed position will be emulated in order
to settle the GPS signal in the receiver. The program will create the necessary number of points
to achieve the time required, considering that for the emulator the sampling rate to read the user
motion file (the csv file) has to be 10 Hz.

The next command would create a user motion file from a route called “seattleSTAR.kml”, with a
speed of 10 m/s, and a settlement period of 8 seconds. The last parameter names the user motion
file with a specific name.

$./kml2csv.py -k seattleSTAR.kml -s 8 -v 10 -o umFile

Figure 115 shows how to create a route and the resulting XML file.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 172/277

Figure 115 Google Maps route and XML file

11.2 Virtual Reality Applications Testing
Virtual Reality (VR) is a 5G use case identified in Work Package 2. We have developed in
TRIANGLE a testing solution for VR applications on Android devices in order to close that gap
between the testbed capabilities and the test specifications. VR is together with Augment Reality
a showcase of 5G applications. To test that our VR testing framework works properly and provides
meaningful information to app developers, we engaged with a VR application developer and
thoroughly tested their application. This application was not mature enough to become an official
TRIANGLE experimenter, yet it provided valuable insights to the TRIANGLE team to fine tune the
VR testing solution. More details on VR testing will be shared in the upcoming Deliverable D5.6.

11.2.1 Requirements
The goal of VR applications is to emulate a natural and fluid interaction between the user and a
virtual world, which will demand network resources. How far from natural and fluidity will determine
the quality of experience perceived by VR users

When the VR is implemented on a mobile phone, the accelerometer and gyroscope are the
components that provides the app a sense of movement, enabling users moving to discover the
surrounding world by moving their heads.

Nowadays, and this may change in the near future, VR experience is fixed, meaning that users
cannot just get up and walk around in order to discover the virtual world. Movement is implemented
by the VR apps by tapping on the phone screen or the corresponding button on the HMD (Head-
Mounted Display) host.

The KPIs of interest for this type of application will surely depend on the business logic to which
the app belongs. However, relevant common KPI were identified in the D2.2 Appendix 4 [D2.2].
Table 56 is an extract from the Apps User Experience Test Specification (AUE).

Table 56 VR Application User Experience Key Performance Indicators

KPI Definition

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 173/277

Time to load the
virtual world

Time elapsed from selecting a scenario (world, experience, etc.) to loading the 3D
visual context

Immersion Cut-off
Probability that successfully started immersion is ended by a cause other than the
intentional termination by the user

In summary, a repetitive and automated test suite for measuring VR application has the following
three requirements:

 Stimuli:

o Rotating the device in the three-spatial axis for discovering the virtual world.

o Emulating taps on the device screen for moving ahead.

 Responses:

o Capturing the state of the application and visualizing certain content from the
virtual world. This is required for measuring the KPI but also for automatically
browsing the virtual environment to follow a given test script.

11.2.2 Architecture
Based on the requirements exposed in the previous section using a three servo motors mechanic
platform is necessary for the stimuli. Additionally, an IR (Image Recognition) based solution is also
necessary to capture the response from the VR app host (Android phone). Figure 116 shows the
high-level architecture of the VR testing solution implemented in TRIANGLE.

Figure 116 VR test module architecture

An important aspect to consider in this module is the accuracy of the servo motors because one
of the common features of the VR apps is that they use a kind of visual aims so that users can
select a menu option for browsing throughout the app.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 174/277

11.2.3 Robotic Arm
A robotic arm has been designed to support a device phone on top. This enables that the test
script can force the phone to move in the three-spatial axis thus discovering the surrounding virtual
world.

Three servo motors constitute the robotic arm for the three-spatial axis. The one place at the
bottom rotates in the axis called “yaw”, the one in the body in the axis “roll” and the one at the
bottom in the axis “pitch”.

Table 58 shows the position range and reference system used by the servos:

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 175/277

Table 57 Robotic arm position range and reference

Axis Range

Yaw

Roll

Pitch

A controller board drives the servo motors. This controller is connected to the test script host (the
TRIANGLE test bed) via serial communication over USB. The commands dictionary basically just
includes commands for setting and getting the position of the servo motors.

11.2.4 Controller Commands
Two commands are needed for the implementation of this module.

Command 1: Set position of the servo:

#<ch> P <pw> S <spd> ...# <ch> P <pw> S <spd> T <time><cr>

<ch>: Servo channel number, 0 - 23

<pw>: pulse width(us), 500 - 2500; the destination position

<spd>: single-channel speed (us/s)(Optional)

<cr>: carriage return, the symbol of the end, ASCII code 13 (Required)

<esc>: Cancel the current command, ASCI code 27

Command 2: Get position of the servo:

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 176/277

QP<ch><cr>

<ch>: Servo channel number, 0 - 23

This command returns the current pulse width of the servo in microseconds.

Auxiliary Commands

We have implemented some “utile” functions in order to facilitate further implementation of test
scripts.

Position conversion degrees- µs

We have implemented a function to convert the magnitude of the position from pulse width (µs)
into degrees. This way is much more intuitive for programming purposes.

The function to convert from µs to degrees is:

Angle (degrees) = (Central position (µs) – Angle (µs)) / Time to spin 180* in µs

The function to convert from degree to us is:

Angle (µs) = Central position (µs) – (Time to spin 180º (µs) * Angle (µs)) / 180

Table 58 shows the reference values needed in the conversion functions for the servos used in
the TRIANGLE testbed:

Table 58 Robotic arm reference values

Axis Central Position (µs) Time to spin 180º (µs)

Yaw 1450 1700

Roll 1550 1650

Pitch 1450 1750

These values are obtained by calibration. More specifically, sending PUTTY commands to set the
reference position and visually checking. This process must be repeated in case the servos are
replaced.

Wait until reach position

As both native commands (get/set) are non-blocking, we have implemented a blocking function
which waits until the servo has reached a set position.

Stop servos

There is no native command to stop the servos. For this reason, we have implemented a function
to stop the servos. This will help for writing test scripts, for instance, when there is need to move
the phone all around until it finds certain object in the virtual world. Basically, this function reads
the current positions of the servo and right after sends the native command for setting that position.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 177/277

11.2.5 Image Recognition
Image Recognition is used in this module for two main purposes:

1. Finding objects in the virtual world, which is the foremost importance for measuring the KPI
of VR apps.

2. Browsing throughout the menus of the app where web driver-based technologies (Android
UI Automation) does not work, i.e., GPU powered user interface.

We have used openCV (open Computer Vision) library as Image Recognition engine in
TRIANGLE. This library implements functions for comparing images, more specifically object and
its containers, providing a matching score (from 0 to 1). This totally meets the requirement of
finding patterns (object) in the virtual world (container) and enables the implementation of the KPI
Time to load virtual world / scene.

Figure 117 shows how openCV refers to the axis depending on the image orientation.

Figure 117 OpenCV system reference

From the comparison result the library provides the coordinates of the maximum matching point
(circle inside the object in Figure 117). The openCV-based image matching process implemented
in TRIANGLE is as described next.

The container image comes from a buffer provided by “minicap” library which runs on the phone
and contains the phone screen (i.e., screen sharing) in near real time basis (see section 0). The
buffer contains some header bytes, which provides metadata about the captured image (version,
size, orientation, etc.). Based that information pointing the first byte of the image (coded in JPEG)
is possible. openCV operations do not work on a specific image coding format. Rather, it uses a
matrix format called Mat. Then, decoding the image buffer into this matrix is the first step. Then,
both container and object images are grey scaled for finding the brightest point, which corresponds
to the maximum matching point (using matchTemplate function).

openCV implements several alternative algorithms for the matching function: CV_TM_SQDIFF,
CV_TM_SQDIFF_NORMED, CV_TM_CCORR, CV_TM_CCORR_NORMED, CV_TM_CCOEFF,
and CV_TM_CCOEFF_NORMED.

In TRIANGLE we decided to use CV_TM_CCOEFF_NORMED because after experimentation
turned to be the one with higher successful matching rate.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 178/277

11.2.6 Interaction with the phone
In order to interact with the phone there are two alternatives: ADB (Android Device Bridge) and the
high performance library “minitouch”.

ADB

ADB is a general-purpose command line tool for debugging Android phone via USB interface. We
have used this tool to program from the test script tapping and swiping on the screen phone.

The response time of this tool since the test script sends the command until the tap really happens
on the phone varies from 0.5 to 1 s approximately. This performance is sufficient for some test
scripts operations such as browsing on the app menu or tapping on the screen to move ahead in
the virtual world. However, there may be some operations to automate which require higher
performance, for instance tapping at moving targets in VR shooter apps. Then, “minitouch” library
(see section 0) is optionally required for use cases.

Additionally, ADB could be used for screen sharing by using its screen shooting command.
However, the repose time of this function is very high, up to 3 s. Screen sharing is a mandatory
performance requirement because the capture frame rate depends on it. Therefore, ADB has been
discarded for this purpose and “minicap” library is mandatorily required for the implementation of
the module.

Minitouch

Minitouch library provides a direct socket interface to Android phones for performing multi-touching
and swiping operations. The response time is very high and sufficient for tapping moving targets.
Experiments proves that this library performs response times around 50 ms and even lower.

Phone data usage

In order to pull out the data used by the phone while executing a VR app we use the information
from the following file from the phone file system:

"cat /proc/net/xt_qtaguid/stats | grep -E \'nw_iface.* app_uid\'\"

Where the variables are:

nw_iface: Network interface

app_uid: this UID of the VR app under test.-

This file contains the following fields:

idx iface acct_tag_hex uid_tag_int cnt_set rx_bytes rx_packets tx_bytes

The data usage is counted in these two fields: rx_bytes and tx_bytes.

Minicap

The screen capturing rate (the number of screen captures per second) is the highest requirement
of the software of the module. Minicap library provides a direct interface socket with the phone to
get screen captures in a high rate. The library documentation claims up to 40 frames per second.
This is sufficient to cover all foreseen testing scenarios in VR apps.

Minicap uses a virtual screen resolution. The screen captures are encoded in JPEG and scaled to
that virtual resolution. This way the application (i.e., the TRIANGLE test script) does not need to
care about the actual resolution of the phone. This is important because there are other
coordinates reference systems in the module such as the openCV, the robotic arm and minitouch.
All components of the module using the same coordinate’s reference system appeared a must in
the implementation of this module.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 179/277

11.2.7 Validation
We have used the reference VR App called “Google Cardboard” for the validation of this module.
Figure 118 shows the validation scenario.

Figure 118 VR test solution validation

The test scripts run on the Controller host which uses all the components of the module: openCV,
minicap, minitouch and the robotic arm. The Controller is connected to the platform via two USB
cables, one for the phone (minicap, minitouch) and another for the robotic arm. The phone is
connected to Internet with WLAN. In the network side, Netem is the software we have used to set
the network conditions, in particular for bandwidth throttling. Netem runs on a host with two Gigabit
Ethernet network interfaces and introduces the impartments on that link.

Figure 119 shows a photo taken in the lab during the validation of the module:

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 180/277

Figure 119 VR validation

The tests have been organized in two main groups.

The first group of the tests aims at determining the optimal configuration of the IR component.
There is one a parameter in the openCV library configuration which determines how restrictive is
the matching operation. The goal is to determine the matching threshold parameter to achieve the
best balance between false matching (i.e., the object is not present but the IR matching operation
returns true) and failed matching (i.e., the object is present but the IR matching operation returns
false). In this procedure we have taken into account that, whenever the matching operation does
not work properly, failed matching (which eventually would mean “KPI not reported”) is more
desirable than false matching (which would mean “a false KPI value”). The later would introduce
noise in further data analytics.

Table 59 compiles the results of the tests. The KPI in the table is the target KPI of the validation,
i.e., time to load the virtual world.

Based on these results we have determined that the optimal matching threshold is 0.80.

Table 59 Validation results for determining matching threshold

Matching
threshold

Average KPI (s) Deviation KPI (s) Failed matching
Operations

0.75 8.27 1.46 10

0.76 9.17 3.40 8

0.77 9.00 1.87 3

0.78 9.38 1.85 6

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 181/277

0.79 10.65 4.18 9

0.80 9.36 2.68 4

0.81 9.46 1.30 7

0.82 10.95 2.44 6

0.83 10.50 1.63 10

0.84 12.39 4.05 10

0.85 11.75 3.40 6

Once determined the optimal configuration of the IR component we have implemented the test
AUE/VR/001 specified in D2.2 to validate the VR test solution.

Table 59 compiles the results of the tests for different network bandwidths.

Table 60 AUE/VR/001 Validation results

Bandwidth
(Mbit/s)

Average KPI (s) Deviation
KPI (s)

Failed matching
operations

Unlimited 9.36 2.68 4

1 61.35 8.87 3

2 29.97 3.25 6

3 22.06 4.06 9

4 14.85 4.11 5

5 10.86 2.79 2

6 9.57 1.60 7

The data usage by the phone to load the virtual world has been 8 MB across all the network
bandwidth configurations.

As observed in the results the IR library sometimes fails in the matching operation. Then this type
of testing will require redundant test repetitions in order to get the necessary amount of KPI values.

11.3 Model-based testing extension
This section presents the extension of TRIANGLE testbed with model-based testing. Model-based
testing is a testing technique that uses a model of the system under test to extract the test cases.
In TRIANGLE, the model describes the interaction of the user and the mobile app, and the
objective is to automatically produce a pool of app user flows that can be used in the test
campaigns to activate (in many different ways) the app functionality required to evaluate a KPI.

The following subsections introduce the foundations of the model-based testing technique as well
as the modeling and specification languages. Then, a methodology to (semi-) automatically extract
the app model is presented. Finally, the model-based testing campaign is presented, which is the
current implementation of the approach, accessible via the TRIANGLE portal.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 182/277

11.3.1 Model-based testing foundations
Model-based testing techniques [37] use a model of the system under test for automatically
generating test cases with an adequate coverage. In the TRIANGLE project, a model-based
approach has been adopted to automatically construct app user flows (user interactions) that allow
the evaluation of the app features using a set of KPIs.

In previous work [28][29][30], the tool MVE was constructed for automating the analysis of extra-
functional properties on Android mobile apps, based on model-based testing and runtime
verification techniques. The former was used to generate a large set of test cases from an app
model provided by the app developer/tester, and then the latter analysed the executions of each
test case for certain properties of interest. Model checking technique [32] has supported test cases
generation and runtime verification, in particular SPIN model checker [31]. Model checking is a
formal technique that exhaustively explores all the possible behaviours of a model to verify that a
property is satisfied or not. On the one hand, the exhaustive exploration is used to produce the
test cases, since they correspond with model behaviours. On the other, the analysis of properties
has been used to detect if the application traces (associated to the execution of a test cases in the
real device) satisfies or not the extra-functional property.

The main drawback of this approach is that a reasonably complete model of an app may generate
thousands, if not millions, of user interactions, which are unfeasible to execute on a real mobile
device. Furthermore, if a developer wants to test a specific feature of the app, we should be able
to produce test cases on which the property can be analysed. Currently, to guarantee this, the
model must be manually modified in order to include only the desired behaviours. The
compositional nature of the app models is not enough to make this task easy, since the user could
miss significant behaviours that contributed to the feature being tested while modifying the model.

In the TRIANGLE project, the previous approach has been extended in two different ways. First,
the construction of the app model and the specific requirements are explicitly separated to produce
meaningful test cases. In consequence, the reduction of the set of test cases happens during the
generation process rather than in the modelling phase. Second, the generation phase uses user-
defined requirements to guide the search of significant test cases. In this way, the app user flows
constructed are guaranteed to satisfy the requirements, and the number of app user flows is
reduced.

App model

The app under test is modelled using nested state machines [29]. By providing explicit models, a
developer is able to define the realistic uses of the app, instead of generating random inputs to
test it. An app state machine was composed of one or more view state machines, which
corresponded to the different screens in the app. Each view state machine contained several
nested state machines modelling different uses of the screen. The edges of a state machine
represented the user actions, such as tapping a button or entering text that should be executed
when traversing the edge.

Figure 120 shows the graphical representation of the model of the Universal Music Player sample
app from the Android SDK, whose GUI can be seen in Figure 121. The app contains a list of songs
classified by genre. The user can select the genre and the first song to play. Then, the app
reproduces the list of songs in a loop starting from the selected one. The app plays music until the
user exits or clicks the pause button. The app model is divided into two activities: one for selecting
a song from genre playlists, called MainView, and other with a full screen player with the playback
controls, called FullScreenView. The model in Figure 120 shows the two activities (MainView and

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 183/277

FullScreenView) and the possible user events (Play/Pause, back, etc.) that can happen during the
app execution.

Figure 120 Universal Music Player model

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 184/277

Figure 121 Universal Music Player GUI

An app user flow is defined as a sequence of user events that goes from an initial state to a final
state of the app state machine. Thus, by exploring the model exhaustively, we were able to
generate all possible app user flows.

To generate the app user flows, the implemented approach used a XML representation of the app
model, instead of the graphical representation (see Figure 120). The format of XML model file will
be presented in Section 11.3.2 (Model parse).

The XML file containing the app model is translated into a PROMELA specification [31]. We then
used the SPIN [31] model checker to explore this specification exhaustively. When a valid end
state was reached, we recorded the generated app user flow in a result file. These app user flows
was then converted into Java programs that performed the flows on an actual Android device,
using the UiAutomator API.
Figure 122 shows part of the PROMELA specification generated automatically from the app model
in Figure 120. The state machines are translated in a single do loop, where each branch
corresponds to a transition. For instance, the one in line 7 corresponds to the transition between
states S2a and S2b.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 185/277

1 DeviceType devices [DEVICES];
2 # define curBackstack devices [device]. Backstack
3 # define curState curBackstack . states [curBackstack . index]
4
5 proctype device_4107a7166c03af9b (int device) {
6 do
7 :: curBackstack . index > -1 && curState == St_MainView_MusicPlayerSM_S2 ->
8 // Event : selectItem
9 transition (device , VIEW_MainView , 6);
10 curState = St_MainView_MusicPlayerSM_S2b
11 :: curBackstack . index > -1 && curState == St_MainView_MusicPlayerSM_S2b ->
12 // Event : clickBack
13 transition (device , VIEW_MainView , 7);
14 curState = St_MusicPlayer_MainView_MusicPlayerSM_S1b
15 :: curBackstack . index > -1 && curState == St_FullScreenView_FullScreenSM_init ->
16 pushToBackstack (device , St_FullScreenView_FullScreenPlayerSM_init);
17 transition (device , VIEW_FullScreenView , 0);
18 curState = St_FullScreenPlayerView_FullScreenSM_S0
19 // ...
20 od
21 }

Figure 122 Extract of PROMELA specification for test case generation

App User Flow Requirements

The TRIANGLE project defines the KPIs of interest that will be used to evaluate the features of
mobile apps, and therefore, provides the requirements for the app user flows. These requirements
are specified as a set of mandatory states and/or transitions of the app model that have to be
reached, along with their execution order. For instance, in audio streaming applications, the main
KPIs are the bit rate (related to audio quality), the buffering time (time spent waiting until music
play starts or resumes), play length (amount of data streamed) and buffering ratio (waiting time
over listening time). In addition, in mobile phones, energy consumption is also relevant, especially
during playback. All these KPIs require that the app starts playing music, thus an essential
requirement of the app user flows is starting music playback.

Since we use the exhaustive exploration of Spin, it is natural to describe the requirements as never
claims [31]. The never claim is a special Spin process that executes synchronously with the system
model, and checks whether a property holds. If it reaches the end state (its closing curly brace),
Spin states that the property is violated and produces a counter-example, which in our case is
interpreted as an app user flow that satisfies the requirements. Our methodology consists of
translating all requirements into a never claim to make Spin generates the app user flows that
satisfy them.

Moreover, the never claim can also be used to prune the state space explored, and thus reduce
the time and resources required, since Spin backtracks and explores a different execution path
when the never claim is blocked.

We apply our approach to obtain the app user flows of the Universal Music Player app. In this case
study, we focus on the following requirements:

 The app eventually starts playing a song, which corresponds to reach state S2b of the app
model.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 186/277

 After that it eventually has to exit. This means that the app has to pass through states S1b,
S0b and the end state of the state machine.

 The full screen activity is never launched.

 The app user flow cannot execute a transition more than once.

Figure 123 Pruning never claim as automaton

Figure 123 represents the never claim of the case study as an automaton. The label !fullScreen
expresses that the full screen activity has been not visited, i.e. Spin never takes the branch in line
15 in Figure 122. Labels S2b, !S2b and so on specify that the corresponding state of the app model
has been (respectively not) reached. This is checked when the branches are evaluated, e.g. in line
11. Finally, the label !repeat states that there are no repeated transitions. We have to define this
requirement because in our PROMELA specification, Spin’s global state contains the app user flow
explored so far. Repeating a transition of the app model adds new actions to the app user flow and
produces new states in Spin, thus the matching algorithm does not detect the repeated transition
in the app model. Although it can see as a drawback, this behaviour allows us to describe other
kinds of requirements that explicitly fire an event several times, which is very useful to discover
behavioural errors of the app.

Note that each state of the automaton has two different transitions, one that links two states, and
another that loops in the same state. The linking transitions are guarded with the requirements and
tracks that they are satisfied in the correct order. When the automaton end state is reached, the
corresponding app user flow is returned. A looping transition lets the execution of the app model
advance while its guard condition is satisfied. When none of the transitions are enabled, Spin stops
exploring the current path, pruning the search state space, as commented above. Therefore, the
guard of a looping transition has to be disabled when the linking transition is enabled (to correctly
track the requirements) and when the current app user flow is not interesting (to prune the search).
For instance, in Figure 123, the looping transitions exclude the paths that have repeated transitions
or activate the full screen activity.

Evaluation

We have carried out some experiments using Spin 6.4.6, with two different never claims: pr. and
no-pr., as well as without one. The pr. never claim prunes the search as we have just explained
(see Figure 123). The no-pr. never claim differs from pr. in looping transitions, that are guarded by

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 187/277

else instead of more restrictive conditions, such as the ones in Figure 120 Universal Music Player
model. Table 61 shows the results. The first three rows use a maximum app user flow length
(maximum number of app model transitions) of 10, and the bottom three rows use 20. The Flows
column shows two values. The first one represents the number of app user flows that satisfy the
requirements. The second one represents all the app user flows explored. Observe that for a
maximum trace size of 10, the no-pr. never claim explores 85 traces, and only 18 are app user
flows that satisfy the requirements. In contrast, the pr. never claim explores 20 traces and finds
the same number of valid app user flows. This means that the use of the pr. never claim drastically
reduces the time elapsed in the analysis. The difference between using the pr. and no-pr. never
claims becomes more evident when the maximum length of app user flow increases.

Table 61 App user flow generation - Experiments

Max. len. Never Flows Time Memory States

10 pr. 18/20 < 1s 9.5MB 1,059

10 no-pr. 18/85 55s 11.1MB 20,787

10 - -/85 < 1s 10.9MB 20,787

20 pr. 20/22 < 1s 9.6MB 1,645

20 no-pr. -/31,159 7.7ha 1.29 GB 13,226,035

20 - -/18,303,632 50.7s 8.1 GBb 74,968,614
a Unfinished after 7.7 hours
b Unfinished after reaching memory limit of 8GB

For example, when using a maximum length of 20 and the no-pr. never claim, after more than
seven hours and 31,159 different app user flows explored (most of them not satisfying the
requirements), the analysis had still not finished. Therefore, our approach, which uses the pr. never
claim to prune the search state space, greatly improves the performance of test case generation
process. If we do not use a never claim at all, the generation of all possible app user flows is much
faster, as seen in third and sixth rows. However, the developer does not know which ones satisfy
the requirements. For instance, in the sixth row, the user ends up with millions of app user flows,
which is not very useful in practice. It is clear that pruning the state space using requirements is
still the best option.

11.3.2 Automatic App model extraction
In deliverable D3.2 “Progress report on the testing framework Release 2” we presented a model-
based testing approach that given a model of the application under test, produces a set of app
user flows that can be used during the test case execution. This approach has been enhanced by
defining a methodology and implementing a tool to assist the app developer to generate the
application model. Although the approach is independent of the device operating system, some
tasks are explained targeting Android devices.

Figure 124 shows an overview of the approach, which is based on three main elements: (i) the
app controller, (ii) the exploration algorithm, and (iii) the model parser. Given the application
binaries, the app controller installs and controls the execution of the target app. The app controller

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 188/277

can perform user events, and capture the hierarchy of visual elements. The exploration algorithm
decides the order in which events are performed and determines whether the app is in a visited or
new state after performing such events. Finally, the model parser transforms the states and
transitions obtained from the exploration into the app model. The following sections explain each
element in more detail.

Figure 124 Model extraction overview

App controller

The app controller interacts with the device where the application is running. The app controller is
responsible for the following tasks: 1) Install, launch and close the application, 2) obtain the
hierarchy of visual elements of the active view, 3) determine the list of visual elements that accept
user events, 4) perform user events on specific visual elements (e.g. click, long click or scroll), and
5) fire system events (e.g. open/close keyboard or play/pause media).

This element is closely related to the device's operating system, and thus its implementation may
change depending on that. Currently, we have implemented an app controller for Android devices,
which is based on two testing frameworks:

Quamotion WebDriver is a test automation framework that automates iOS and Android apps on
real devices. WebDriver is an open protocol for test automation originally designed for web
applications based on exchange of JSON messages.

Android UIAutomator [38] is a UI testing framework included in the Android SDK. In our approach,
the main task of UIAutomator is to extract the Document Object Model (DOM) of the app; i.e., to
obtain the hierarchy of visual elements. For each visible element, the DOM includes a list of
attributes: the resource identifier, the class, and the user events accepted. This information is
especially suitable to determine if the UI has changed after performing a user event, and to obtain
the list of visual elements and events that must be explored.

Mobile applications have complex UIs with multiple activities, fragments, overlays, views, etc.,
which accept different types of user events. The exhaustive exploration of all visual elements that
react to user events can lead, in the worst case, to large models with a worse performance in the
generation phase of the app user flow. To manage the size of the application model, the app
controller includes the following configurable options:

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 189/277

 Types of events considered in the exploration. For instance, if scrolling a layout
produces the same effect as clicking on a tab menu, we can ignore the scrollable
views and perform only click events.

 Number of list items explored. In some apps, the effect of performing an event on a
list item is the same. For instance, in a music player with a list of playable songs,
clicking on each song will start playback. Thus, exploring just some of the items is
enough to extract the model.

 Ignored elements. Some events in specific elements could have non-desired effects
during the model extraction or the test execution. For instance, elements that restore
the account password or open the configuration settings. In this way, they are
systematically excluded from exploration.

 Predefined text for specific EditText fields. This is relevant in those apps whose
behaviour depends on the information provided in a form, for instance apps that
require logging. Observe that most of the configurable options are related to task 3,
obtaining the list of visual elements that will be explored. In this way, the exploration
algorithm examines a reduced number of states. In contrast, the configuration of
input text for EditText fields, is required to correctly explore all desirable app
behaviours.

Exploration algorithm

The exploration algorithm defines a strategy to execute user events and traverse the different app
states. A state represents the app UI after performing a user event on a specific element, that is;
a state is a 3-tuple (xPath, event, dom), where xPath identifies the element in the source DOM,
event is the event performed on the element, and dom is the DOM after the event. Transitions
between states symbolise the execution of the event on the element stored in the target state.

We have an exploration algorithm with a depth-first search strategy. The main data structures are
the set of visited states, the path (list) of states that leads to the current one, and the stack of
unvisited states. While there are unvisited states, the algorithm extracts one and requests that the
app controller performs the user event on the visual element, and stores the resulting DOM. Then,
the algorithm checks whether a state in visited has an equivalent DOM. If so, the state is
considered visited, and the app model is updated with a new transition from the parent state to the
visited state and backtracks. Otherwise, the state is new, and it is included in visited. In addition,
the app model is updated with the new state and the transition from its parent. If the node has
successors, that is visual elements that can handle user events, they are included in the stack of
unvisited states. Otherwise, the algorithm backtracks to a previous state.

Matching criterion:

The matching criterion defines when two DOMs can be considered equivalent. If we consider that
two DOMs are equivalent when they are completely equal, the number of different states explored
can be very large. Thus, the objective of the matching criterion is to reduce the number of different
states, abstracting away specific content of the DOMs. The criterion is defined at different levels
as follows:

 Two DOMs are equivalent if they are in the same activity, have the same hierarchy
(hierarchy relation and number of nodes) and their nodes are equivalent.

 Two nodes are equivalent if the following attributes are equal: resource-id, class,
package, checkable, clickable, enabled, scrollable, long-clickable.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 190/277

 If the node is editable, the text attribute must be also equal. A node is editable if its
class is android.widget.EditText or inherits from this class. This rule is required to
generate models of forms.

Backtracking

The exploration algorithm must backtrack when the explored state has been previously visited or
when it has no successors. The backtracking process consists in finding a state in path (from last
to first) that has at least one unexplored successor state, i.e.; there is a successor state in unvisited.
The backtracking process leaves this state in the last position of path. After that, the algorithm
requests that the app controller closes the app, and performs the list of user events (on their
corresponding elements) included in path. When the backtracking process ends, the app will be
ready to accept the user event of the next unexplored state.

Model parse

The model parser produces the app model that will be used to generate the app user flows. The
model parser acts when new states and/or transitions are added. The app model is described with
the modelling language presented in [39], which was also introduced in deliverable D3.2. The
language is based on nested state machines. The higher-level state machine represents the app.
It can contain one or several state machines associated with the different activities of the app. At
the lower level, the state machines represent the interaction of the user with the app. Transitions
represent the user events performed in specific visual elements (buttons, layouts, etc.), and the
source and target states symbolise the UI before and after the user event. There is a special type
of state, called the connection state, used to transit between state machines. Connection states
have two outgoing unlabelled transitions: one that points to a state of the same state machine
(returning state), and another to the target state machine. When a connection state is reached, the
app executes the target state machine, and when the target state machine reaches the final state,
the app comes back to the returning state of the source state machine. Figure 125 shows the
model of the Universal Music Player app.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 191/277

Figure 125 Universal Music Player model

In Figure 125, the app model describes the desired/undesired behaviours that the developer
wishes to test. However, the app model depicts the possible interactions of the user. Although the
modelling language is very expressive, the current version of the model parser has the following
restrictions:

 Transitions between state machines of different views are allowed, but not transitions
between state machines of the same view.

 Transitions are not labelled with temporal constraints.

 Transitions to other apps are not included in the model.

 Initial states do not represent the state of the UI. Thus, transitions from initial states are
automatically fired, without any user event.

The resulting model is stored as a XML file that must be compliant with the XML schema shown in
Figure 126.

<?xml version="1.0" encoding="UTF-8"?>
 <xs:element name="StaticConfiguration">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Applications">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Application">

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 192/277

 <xs:complexType>
 <xs:sequence>
 <xs:element name="Events">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Event" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Views">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="View">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="StateMachines">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="StateMachine" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="States">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="State" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Transitions">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Transition" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="id" type="xs:int"/>
 <xs:attribute name="next" type="xs:string"/>
 <xs:attribute name="eventgroup" type="xs:string"/>
 <xs:attribute name="type" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string"/>
 <xs:attribute name="externalAccessibility" type="xs:string"/>

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 193/277

 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string"/>
 <xs:attribute name="externalAccessibility" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="codeName" type="xs:string"/>
 <xs:attribute name="name" type="xs:string"/>
 <xs:attribute name="package" type="xs:string"/>
 <xs:attribute name="externalAccessibility" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Devices">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Device">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="AssignedApplication">
 <xs:complexType>
 <xs:attribute name="xmlns:xsi" type="xs:string"/>
 <xs:attribute name="xsi:type" type="xs:string"/>
 <xs:attribute name="codeName" type="xs:string"/>
 <xs:attribute name="viewPlace" type="xs:int"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="port" type="xs:int"/>
 <xs:attribute name="path" type="xs:string"/>
 <xs:attribute name="serialNumber" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="xmlns" type="xs:string"/>
 </xs:complexType>
 </xs:element>
</xs:schema>

Figure 126 App model XML schema

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 194/277

Evaluation

To evaluate the model extraction process, we have chosen five different apps from Google Play
Store and Android SDK: iDo Calculator, Kolab Notes, Topeka, Universal Music Player, and
WordPress. The model extraction is a configurable process, which allows us to select the
maximum depth explored (number of consecutive user events), number of list items explored, and
list of elements excluded. In addition, if the app requires a form to be filled in, we can provide
specific text input. Table 62 shows the different configurations for the evaluated apps, and Table
63, some results.

Table 62 Model extraction - Configuration

App max depth list items events el. excluded

iDo Calc. 5 1 click 0

UAMP 10 1 click 0

Kolab Notes 8 2 click 2

Topeka 15 1 click 0

Word Press 8 1 click 7

iDo Calculator4 is a calculator with simple and scientific modes. Text input is performed by clicking
independent buttons for each digit and arithmetic operation. The resulting app model considers
the click on each calculator button as a different user event. Although all these events leave the
app in the same state, the number of transitions is too high to produce the app user flows later. In
this situation, we recommend manually modifying the model to abstract the buttons, for example
by defining two types of buttons, numeric and arithmetic, and reducing the number of transitions.

Universal Music Player (UAMP)5 is a sample app included in the Android SDK. It presents a list of
songs, classified by Genre that can be reproduced. From the point of view of the app model,
playing any of the songs has the same effect. Thus, we have configured the model extraction to
explore just the first item of each list. It is worth mentioning a limitation of the UIAutomator dump
process; it cannot obtain the DOM when the UI is changing dynamically, for instance if a video/song
is playing. Thus, the application controller has to pause media playing before obtaining the DOM.

Kolab Notes6 is an app for taking notes that can be local to, or shared by different devices using
an account. The model only considers the local mode. In addition, we have excluded two elements
from the exploration, because these elements show a colour picker that is currently difficult to
handle. With respect to the text input, we fill in the note title and content with the same text in all
executions. A note can be deleted, edited, etc., and these options are shown in a list, thus, we
have set the number of list items explored to 2.

4 Available at https://play.google.com/store/apps/details?id=com.ibox.calculators

5 Available at https://github.com/googlesamples/android-UniversalMusicPlayer

6 Available at https://play.google.com/store/apps/details?id=org.kore.kolabnotes.android

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 195/277

Topeka7 is a Google sample for playing quizzes. Quiz questions are random, some of them are
answered by choosing from a possible four answers, and others by writing text. Thus, it is difficult
to systematically get the right answer. In addition, this issue can produce slightly different models
and complicates the automatic execution of app user flows. Therefore, the app developer must
provide us with a list of questions that are asked in the same order.

WordPress8 is an app for visualising and managing WordPress sites. The app has an initial login
form, thus we configure the user name and password with specific input text. In addition, the app
provides links to recover user name and password, create a new account or read the Terms of
Service. We have excluded these links from the exploration. Another peculiarity of this app, is that
it suggests sites to visit. The list of sites changes dynamically, and furthermore, the sites can
include different clickable elements. This situation is similar to the dynamic questions in Topeka.
However, in order to produce a first version of the model, we have limited the number of sites
explored by limiting the maximum depth.

Table 63 Model extraction - Results

App Activities State
machines

States Transitions Time
(min)

App
launches

iDo Calc. 2 2 9 93 49 23

UAMP 3 4 13 41 14 22

Kolab Notes 2 2 16 69 32 45

Topeka 3 3 16 51 33 38

Word Press 14 16 31 77 54 39

11.3.3 The model-based testing campaign
This section presents the integration of the model-based testing approach in the TRIANGLE
framework. This new functionality can be used by means of a new type of campaign available in
the TRIANGLE portal, called Model based Campaign (see Figure 127). To include this new
campaign in the portal, it has been integrated in the testbed (and in the testbed workflow) the
engine to automatically generate and select the app user flows to be executed during the
campaign.

7 Available at https://github.com/googlesamples/android-topeka

8 Available at https://play.google.com/store/apps/details?id=org.wordpress.android

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 196/277

Figure 127 TRIANGLE portal - model based testing campaign

The complete framework, the integration of the model-based testing approach in TRIANGLE, and
the preliminary evaluation of different apps (Universal Music Player and ExoPlayer) using the
model-based testing approach are presented in [34], [35] and [36].

To run a model based testing campaign some previous steps have to be performed. First, the app
developer has to upload to the portal the binaries of an instrumented version of the app.
Thesesteps are common for all campaign types in the TRIANGLE testbed.

In addition, the app developer has to produce a model of the app that captures the different states
of the app (GUI) based on the interactions with the app user. As presented in Section 11.3.1, the
modelling language is based on nested state machines, which in practice is specified in an xml
file. The model can be manually specified or automatically extracted using the approach described
in Section 11.3.2. It is worth noting that the automatic approach has some limitations because it
can only capture a subset of user interactions and GUI components.

Finally, the app developer has to define the requirement that the app user flows generated must
satisfy. In Section 11.3.1, the requirements were defined with automata using the specification
language of the underlying tool (the SPIN model checker) [33]. However, to simplify the notation
and to abstract the app developer of the underlying tools, the TRIANGLE portal accepts the
requirements in xml format. Figure 128 shows an example of requirement described in xml and
the following table shows the complete XML schema. The requirements can restrict the number of

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 197/277

times a user event is fired, the app screens/view visited, etc. The requirement is composed by the
invariants and the sequence of constraints. The invariants have to be satisfied in the complete app
user flow. For instance, in the example the invariant (Figure 128 line 3) defines the maximum
number of play_pause events in the complete app user flow; that is, restricts how many times the
app user can click in the play/pause button; and imposes a delay of 50 seconds between the
execution of the play_pause event and the next event fired. In contrast, the constraints do not have
to be satisfied in the complete trace. They must be satisfied in the order they are defined. In the
example, the sequence of constraints defines that first, the event Dash_video_1 must be fire one
time. Then, it is checked that the play_pause event has been fired two times, and finally, the end
state of the SampleChooser activity must be visited, the app must enter and leave this activity.
This requirement can generate multiple app user flows suitable to test the play and pause features
of a content distribution app.

Figure 128 Example of requirement in xml format

<?xml version="1.0" encoding="utf-8"?>

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
 targetNamespace="http://www.morse.uma.es/appuserflowrequirement"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="appUserFlowRequirement">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="description" type="xs:string" />
 <xs:element name="application">
 <xs:complexType>
 <xs:attribute name="codeName" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
 <xs:element name="invariants">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="loop">
 <xs:complexType>

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 198/277

 <xs:attribute name="min" type="xs:unsignedByte" use="required" />
 <xs:attribute name="max" type="xs:unsignedByte" use="required" />
 </xs:complexType>
 </xs:element>
 <xs:element name="event">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string" use="required" />
 <xs:attribute name="max" type="xs:unsignedByte" use="required" />
 </xs:complexType>
 </xs:element>
 <xs:element name="view">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string" use="required" />
 <xs:attribute name="visit" type="xs:boolean" use="required" />
 </xs:complexType>
 </xs:element>
 <xs:element name="state">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string" use="required" />
 <xs:attribute name="view" type="xs:string" use="required" />
 <xs:attribute name="statemachine" type="xs:string" use="required" />
 <xs:attribute name="visit" type="xs:boolean" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="sequence">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" name="constraint">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="unbounded" name="state">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string" use="required" />
 <xs:attribute name="view" type="xs:string" use="required" />
 <xs:attribute name="statemachine" type="xs:string" use="required" />
 <xs:attribute name="visit" type="xs:boolean" use="required" />
 </xs:complexType>
 </xs:element>
 <xs:element minOccurs="0" name="event">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string" use="required" />
 <xs:attribute name="max" type="xs:unsignedByte" use="required" />
 <xs:attribute name="time" type="xs:unsignedByte" use="optional" />
 <xs:attribute name="text" type="xs:string" use="optional" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="type" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 199/277

 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
</xs:schema>

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 200/277

12 References
[1] Cisco Visual Networking Index: Forecast and Trends, 2017-2022

[2] Vagrant by HashiCorp: https://www.vagrantup.com/

[3] Bootstrap front-end framework: http://getbootstrap.com/

[4] The dummynet project: http://info.iet.unipi.it/~luigi/dummynet
[5] Android Debug Bridge: https://developer.android.com/studio/command-line/adb.html

[6] Logcat Command-line Tool: https://developer.android.com/studio/command-line/logcat.html

[7] OML Measurement Library: https://oml.mytestbed.net/projects/oml/wiki/

[8] D2.1 Initial report on the testing scenarios, requirements and use cases, Appendix 2

[9] http://www.keysight.com/en/pd-2372474-pn-E7515A/uxm-wireless-test-set?cc=US&lc=eng

[10] OpenStackClient,” [Online]. Available: https://docs.openstack.org/python-
openstackclient/latest/.

[11] “OpenStack API Documentation,” [Online]. Available: https://developer.openstack.org/api-
guide/quick-start/.

[12] “ETSI OSM,” [Online]. Available: https://osm.etsi.org/.

[13] C. B. (ed.), “OSM White Paper - Release TWO Technical Overview,” April 2017. [Online].
Available: https://osm.etsi.org/images/OSM-Whitepaper-TechContent-ReleaseTWO-
FINAL.pdf.

[14] “OSM Release TWO,” [Online]. Available:
https://osm.etsi.org/wikipub/index.php/OSM_Release_TWO.

[15] “RO Northbound Interface,” [Online]. Available:
https://osm.etsi.org/wikipub/index.php/RO_Northbound_Interface.

[16] “SO REST API (OSM RELEASE ONE),” [Online]. Available:
https://osm.etsi.org/wikipub/images/2/24/Osm-r1-so-rest-api-guide.pdf.

[17] “Logs and troubleshooting (Release TWO),” [Online]. Available:
https://osm.etsi.org/wikipub/index.php/Logs_and_troubleshooting_(Release_TWO).

[18] M. Broy, B. Jonsson, J.P. Katoen, M. Leucker, A. Pretschner. Model-Based Testing of
Reactive Systems: Advanced Lectures (Lecture Notes in Computer Science). Springer-
Verlag, Berlin, Heidelberg (2005)

[19] ITU-T P.501: Test signals for use in telephonometry

[20] ITU-T, “G.1030 Estimating end-to-end performance in IP networks for data applications”

[21] ITU-T, “G.1031 QoE factors in web-browsing”

[22] J. Nielsen, “Response Times: The Three Important Limits”, from “Usability Engineering”,
1993

[23] ISO/IEC 23009-1:2014 Information technology -- Dynamic adaptive streaming over HTTP
(DASH) -- Part 1: Media presentation description and segment formats

[24] Asterisk custom communications: http://www.asterisk.org/

[25] CSipSimple VoIP client: https://code.google.com/archive/p/csipsimple/

[26] ExoPlayer: https://google.github.io/ExoPlayer/

[27] GPAC Multimedia Open Source Project: https://gpac.wp.mines-telecom.fr/

[28] A. R. Espada, M. M. Gallardo, A. Salmerón, and P. Merino. Runtime verification of expected
energy consumption in smartphones. In Proc. of the 22nd Int. Symposium on Model
Checking Software, pages 132–149. Springer International Publishing, Aug. 2015.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 201/277

[29] A. R. Espada, M. M. Gallardo, A. Salmerón, and P. Merino. Using model checking to
generate test cases for android applications. In Proc. 10th Workshop on Model Based
Testing, volume 180 of EPTCS, pages 7–21. Open Publishing Association, 2015.

[30] A. R. Espada, M. M. Gallardo, A. Salmerón, and P. Merino. Performance Analysis of Spotify®
for Android with Model Based Testing. Mobile Information Systems, 2017:14, 2017.

[31] G. Holzmann. The SPIN Model Checker : Primer and Reference Manual. Addison-Wesley
Professional, Sept. 2003.

[32] E. Clarke, O. Grumberg, and D. Peled. Model checking. Mit Press, 1999. Android: Testing
UI for Multiple Apps. https://developer.android.com/training/testing/ui-testing/uiautomator-
testing.html

[33] L. Panizo, A. Salmerón, M. M. Gallardo, and P. Merino. Guided Test Case Generation for
Mobile Apps in the TRIANGLE Project: Work in Progress. In Proc. of the 24th International
SPIN Symposium on Model Checking of Software, pages 192-195. ACM, 2017.

[34] L. Panizo, A. Díaz, B. García, B.: An extension of TRIANGLE testbed with model-based
testing. In: M.M. Gallardo, P. Merino (eds.) Model Checking Software, pp. 190-195. Springer
International Publishing (2018)

[35] A.R. Espada, M.M. Gallardo, A. Salmerón, L. Panizo and P. Merino. A formal approach to
automatically analyse extra-functional properties in mobile applications. Submitted to Journal
Software Testing Verification and Reliability.

[36] L. Panizo, A. Díaz, B. García. A formal approach to automatically analyse extra-functional
properties in mobile applications. Submitted to International Journal on Software Tools for
Technology Transfer.

[37] M. Broy, B. Jonsson, J.P. Katoen, M. Leucker, A. Pretschner. Model-Based Testing of
Reactive Systems: Advanced Lectures (Lecture Notes in Computer Science). Springer-
Verlag, Berlin, Heidelberg (2005)

[38] Android: Testing UI for Multiple Apps. https://developer.android.com/training/testing/ui-
testing/uiautomator-testing.html

[39] “Information Technology — Dynamic adaptive streaming over HTTP (DASH) — Part 5:
Server and network assisted DASH (SAND)”, ISO/IEC 23009-5:2017

[40] “python-docx” Library. Available: https://python-docx.readthedocs.io

[41] “Information Technology — Dynamic adaptive streaming over HTTP (DASH) — Part 5:
Server and network assisted DASH (SAND)”, ISO/IEC 23009-5:2017

[42] “Server and network assisted DASH for 3GPP Multimedia Services”, ETSI 3GPP SA-
170732, June 2017

[43] “Information technology -- Dynamic adaptive streaming over HTTP (DASH) -- Part 1: Media
presentation description and segment formats”, ISO/IEC 23009-1:2014/Amd.
1:2015/Cor.1:2015

[44] “Authentication and API request workflow,” [Online]. Available:
https://developer.openstack.org/api-guide/quick-start/api-quick-start.html#authentication-
and-api-request-workflow.

[45] “OpenStack images,” [Online]. Available: https://docs.openstack.org/image-guide/obtain-
images.html.

[46] “Reference VNF and NS Descriptors (Release TWO),” [Online]. Available:
https://osm.etsi.org/wikipub/index.php/Reference_VNF_and_NS_Descriptors_(Release_T
WO.

[47] http://www.keysight.com/en/pd-1842303-pn-N6705B/dc-power-analyzer-modular-600-w-4-
slots?pm=PL&nid=-35714.937221&cc=DK&lc=dan

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 202/277

[48] A. Abdelrazik, G. Bunce, K. Cacciatore, K. Hui, S. Mahankali, F. Van Rooyen, “Adding Speed
and Agility to Virtualized Infrastructure with OpenStack,” White Paper, Apr. 2015.

[49] R. Bruschi, G. Genovese, A. Iera, P. Lago, G. Lamanna, C. Lombardo, S. Mangialardi,
“OpenStack Extension for Fog-Powered Personal Services Deployment”, First International
Workshop on Softwarized Infrastructures for 5G and Fog Computing (Soft5 2017), Genoa,
Italy, September 2017.

[50] DevStack, https://wiki.openstack.org/wiki/DevStack.

[51] ETSI Group Report MEC 018, “End to End Mobility Aspects”, version 1.1.1, October 2017.

[52] “MEC Deployments in 4G and Evolution Towards 5G”, ETSI White Paper, February 2018

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 203/277

13 Annex 1: Portal Database
The Portal uses an SQL database as backend. This annex includes the current definition of the
database tables, using SQL dialect supported by PostgreSQL.

CREATE TABLE users (
 id integer PRIMARY KEY,
 username text UNIQUE NOT NULL,
 email text UNIQUE NOT NULL,
 profiles integer -- Flags: app developer, device maker, MNO, researcher
);

CREATE TABLE apps (
 id integer PRIMARY KEY,
 code text UNIQUE NOT NULL,
 user_id integer NOT NULL FOREIGN KEY REFERENCES users (id),
 name text NOT NULL,
 os integer -- Enum: Android, iOS, Other
);

CREATE TABLE app_versions (
 id integer PRIMARY KEY,
 app_id integer NOT NULL FOREIGN KEY REFERENCES apps (id),
 version text NOT NULL,
 version_code text,
 file bytea,
 CONSTRAINT unique_version UNIQUE (app_id, version)
);

CREATE TABLE app_user_flows (
 id integer PRIMARY KEY,
 app_id integer NOT NULL FOREIGN KEY REFERENCES apps (id),
 kpi_id integer NOT NULL FOREIGN KEY REFERENCES kpis (id),
 name text NOT NULL,
 script bytea NOT NULL
);

CREATE TABLE kpis (
 id integer PRIMARY KEY,
 name text NOT NULL,
 description text,
 kpi_type integer -- Enum: app, device...
);

CREATE TABLE kpi_marks (
 id integer PRIMARY KEY,
 kpi_id integer NOT NULL FOREIGN KEY REFERENCES kpis (id),
 name text NOT NULL,
 description text,
 order integer,
 allowed_types integer, -- Flags: user action, UI element, UI element property,
internal
 internal_help text
);

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 204/277

CREATE TABLE kpi_mark_supports (
 id integer PRIMARY KEY,
 app_user_flow_id integer NOT NULL FOREIGN KEY REFERENCES app_user_flows (id),
 kpi_mark_id integer NOT NULL FOREIGN KEY REFERENCES kpi_marks (id),
 support_type integer NOT NULL, -- Enum: user action, UI element, UI element
property, internal
 user_action integer,
 ui_element text,
 ui_element_property text
);

CREATE TABLE scenarios (
 id integer PRIMARY KEY,
 name string UNIQUE NOT NULL
);

CREATE TABLE test_configurations (
 id integer PRIMARY KEY,
 scenario_id integer NOT NULL FOREIGN KEY REFERENCES scenarios (id),
 name string UNIQUE NOT NULL
)

CREATE TABLE devices (
 id integer PRIMARY KEY,
 string name UNIQUE NOT NULL,
 owner_id integer FOREIGN KEY REFERENCES users (id),
 testbed boolean NOT NULL,
 os integer -- Enum: Android, iOS, Other
);

CREATE TABLE campaigns (
 id integer PRIMARY KEY,
 owner_id integer NOT NULL FOREIGN KEY REFERENCES users (id),
 name text NOT NULL,
 certification boolean NOT NULL,
 campaign_type integer, -- Enum: app, device, mno, researcher
 repeat integer NOT NULL,
 state integer -- Enum: created, scheduled, running, finished
);

CREATE TABLE campaign_app_versions (
 id integer PRIMARY KEY,
 campaign_id integer NOT NULL FOREIGN KEY REFERENCES campaigns(id),
 app_version_id integer NOT NULL FOREIGN KEY REFERENCES app_versions(id),
 CONSTRAINT unique_campaign_app_version UNIQUE (campaign_id, app_version_id)
)

CREATE TABLE campaign_kpis (
 id integer PRIMARY KEY,
 campaign_id integer NOT NULL FOREIGN KEY REFERENCES campaigns (id),
 kpi_id integer NOT NULL FOREIGN KEY REFERENCES kpis (id),
 app_user_flow_id integer FOREIGN KEY REFERENCES app_user_flows (id),
 CONSTRAINT unique_support UNIQUE (campaign_id, kpi_id)
);

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 205/277

CREATE TABLE campaign_scenarios (
 id integer PRIMARY KEY,
 campaign_id integer NOT NULL FOREIGN KEY REFERENCES campaigns (id),
 scenario_id integer NOT NULL FOREIGN KEY REFERENCES scenarios (id),
 CONSTRAINT unique_scenario UNIQUE (campaign_id, scenario_id)
);

CREATE TABLE campagin_devices (
 id integer PRIMARY KEY,
 campaign_id integer NOT NULL FOREIGN KEY REFERENCES campaigns (id),
 device_id integer NOT NULL FOREIGN KEY REFERENCES devices (id),
 CONSTRAINT unique_device UNIQUE (campaign_id, device_id)
);

CREATE TABLE experiments (
 id integer PRIMARY KEY,
 campaign_id integer NOT NULL FOREIGN KEY REFERENCES campaigns (id),
 order integer,
 app_version_id integer FOREIGN KEY REFERENCES app_versions (id),
 kpi_id integer FOREIGN KEY REFERENCES kpis (id),
 app_user_flow_id integer FOREIGN KEY REFERENCES app_user_flows (id),
 scenario_id integer FOREIGN KEY REFERENCES scenarios (id),
 device_id integer FOREIGN KEY REFERENCES devices (id),
 oml_database text
);

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 206/277

14 Annex 2: Portal API REST
This annex describes the API REST provided by the Portal to access the test campaign information
available at the Portal.

14.1 Devices
List all devices

Response

Get a single device

Response

14.2 Users
List all users

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 207/277

Response

Get a single user

Response

14.3 Apps
List all apps

Response

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 208/277

Get a single app

Response

14.4 Features
List all features

Response

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 209/277

Get a single feature

Response

14.5 Test cases
List all test cases

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 210/277

Response

Get a single test case

Response

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 211/277

14.6 Scenarios
List all scenarios

Response

Get a single scenario

Response

14.7 Campaigns
List all the campaigns in the application

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 212/277

15 Annex 3: Measurements points (Instrumentation library)

15.1 Common Services

Login

 App Initialization Start - Login Required
eu.TRIANGLE_project.appinstr.co.Login.appInitializationStartLoginRequired()
Generated message:
Co\tLogin\tApp Initialization Start - Login Required

 App Initialization Start - Login Not Required

eu.TRIANGLE_project.appinstr.co.Login.appInitializationStartLoginNotRequired()
Generated message:
Co\tLogin\tApp Initialization Start - Login Not Required

 App Started

eu.TRIANGLE_project.appinstr.co.Login.appStarted()
Generated message:
Co\tLogin\tApp Started

Menu Navigation

 Start Menu Navigation
eu.TRIANGLE_project.appinstr.co.MenuNavigation.startMenuNavigation()
Generated message:
Co\tNavigation\tStart Menu Navigation

 Menu Navigation - App Ready

eu.TRIANGLE_project.appinstr.co.MenuNavigation.menuNavigationAppReady(<success>)
Generated message:
Co\tNavigation\tMenu Navigation - App Ready\t<boolean success>

15.2 Content Distribution Streaming Services

Media File Playback

 Media File Playback - Start
eu.TRIANGLE_project.appinstr.cs.MediaFilePlayback.mediaFilePlaybackStart()
Generated message:
Cs\tPlayback\tMedia File Playback – Start

 Media File Playback - End

eu.TRIANGLE_project.appinstr.cs.MediaFilePlayback.mediaFilePlaybackEnd()
Generated message:
Cs\tPlayback\tMedia File Playback – End

 Media File Playback - First Picture

eu.TRIANGLE_project.appinstr.cs.MediaFilePlayback.mediaFilePlaybackFirstPicture(
)
Generated message:

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 213/277

 Cs\tPlayback\tMedia File Playback - First Picture

 Media File Playback - Video Resolution
eu.TRIANGLE_project.appinstr.cs.MediaFilePlayback.mediaFilePlaybackVideoResoluti
on(<resolution_x>, <resolution_y>)
Generated message:
Cs\tPlayback\tMedia File Playback - Video Resolution\t<int resolution_x>\t<int
resolution_y>

 Media File Playback - Content Stall Start

eu.TRIANGLE_project.appinstr.cs.MediaFilePlayback.mediaFilePlaybackContentStallS
tart()
Generated message:
Cs\tPlayback\tMedia File Playback - Content Stall Start

 Media File Playback - Content Stall End

eu.TRIANGLE_project.appinstr.cs.MediaFilePlayback.mediaFilePlaybackContentStallE
nd()
Generated message:
Cs\tPlayback\tMedia File Playback - Content Stall End

Play and Pause

 Media File Playback - Pause
eu.TRIANGLE_project.appinstr.cs.PlayAndPause.mediaFilePlaybackPause(<success>)
Generated message:
Cs\tPlayPause\tMedia File Playback - Pause\t<boolean success>

 Media File Playback - Resume

eu.TRIANGLE_project.appinstr.cs.PlayAndPause.mediaFilePlaybackResume(<success>)
Generated message:
Cs\tPlayPause\tMedia File Playback - Resume\t<boolean success>

Stop and Replay

 Media File Playback - Stop
eu.TRIANGLE_project.appinstr.cs.StopAndReplay.mediaFilePlaybackStop(<success>)
Generated message:
Cs\tStopReplay\tMedia File Playback - Stop\t<boolean success>

Search and Seek

 Media File Playback - Search
eu.TRIANGLE_project.appinstr.cs.SearchAndSeek.mediaFilePlaybackSearch(<success>)
Generated message:
Cs\tSearchSeek\tMedia File Playback - Search\t<boolean success>

 Media File Playback - Seek

eu.TRIANGLE_project.appinstr.cs.SearchAndSeek.mediaFilePlaybackSeek(<success>)
Generated message:
Cs\tSearchSeek\tMedia File Playback - Seek\t<boolean success>

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 214/277

 Media File Playback - First Search Result
eu.TRIANGLE_project.appinstr.cs.SearchAndSeek.mediaFilePlaybackFirstSearchResult
()
Generated message:
Cs\tSearchSeek\tMedia File Playback - First Search Result

Rewind and Fast Forward

 Media File Playback - Rewind
eu.TRIANGLE_project.appinstr.cs.RewindandFastForward.mediaFilePlaybackRewind(<su
ccess>)
Generated message:
Cs\tRewindFF\tMedia File Playback - Rewind\t<boolean success>

 Media File Playback - Fast Forward

eu.TRIANGLE_project.appinstr.cs.RewindandFastForward.mediaFilePlaybackFastForwar
d(<success>)
Generated message:
Cs\tRewindFF\tMedia File Playback - Fast Forward\t<boolean success>

Playlist Skip Forward and Backwards

 Playlist - Skip Forward
eu.TRIANGLE_project.appinstr.cs.PlaylistSkipForwardandBackward.playlistSkipForwa
rd(<success>)
Generated message:
Cs\tSkipFwBw\tPlaylist - Skip Forward\t<boolean success>

 Playlist - Skip Backwards

eu.TRIANGLE_project.appinstr.cs.PlaylistSkipForwardandBackward.playlistSkipBackw
ards(<success>)
Generated message:
Cs\tSkipFwBw\tPlaylist - Skip Backwards\t<boolean success>

Download Media Content for Offline Playing

 Media Content Download - Start
eu.TRIANGLE_project.appinstr.cs.DownloadMediaContentForOfflinePlaying.mediaConte
ntDownloadStart()
Generated message:
Cs\tDownloadMedia\tMedia Content Download – Start

 Media Content Download - End

eu.TRIANGLE_project.appinstr.cs.DownloadMediaContentForOfflinePlaying.mediaConte
ntDownloadEnd(<success>)
Generated message: Cs\tDownloadMedia\tMedia Content Download - End\t<boolean
success>

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 215/277

15.3 Live Streaming Services

Live Video Playback

 Live Video Playback - Start
eu.TRIANGLE_project.appinstr.ls.LiveVideoPlayback.liveVideoPlaybackStart()
Generated message:
Ls\tLivePlayback\tLive Video Playback – Start

 Live Video Playback - End

eu.TRIANGLE_project.appinstr.ls.LiveVideoPlayback.liveVideoPlaybackEnd(<success>
)
Generated message:
Ls\tLivePlayback\tLive Video Playback - End\t<boolean success>

 Live Video Playback - First Picture

eu.TRIANGLE_project.appinstr.ls.LiveVideoPlayback.liveVideoPlaybackFirstPicture(
)
Generated message:
Ls\tLivePlayback\tLive Video Playback - First Picture

 Video Resolution

eu.TRIANGLE_project.appinstr.ls.LiveVideoPlayback.videoResolution(<resolution_x>
, <resolution_y>)
Generated message:
Ls\tLivePlayback\tVideo Resolution\t<int resolution_x>\t<int resolution_y>

 Live Video Playback - Stall Start

eu.TRIANGLE_project.appinstr.ls.LiveVideoPlayback.liveVideoPlaybackStallStart()
Generated message:
Ls\tLivePlayback\tLive Video Playback - Stall Start

 Live Video Playback - Stall End

eu.TRIANGLE_project.appinstr.ls.LiveVideoPlayback.liveVideoPlaybackStallEnd()
Generated message:
Ls\tLivePlayback\tLive Video Playback - Stall End

Broadcast Live Video

 Broadcast Live Video - Start
eu.TRIANGLE_project.appinstr.ls.BroadcastLiveVideo.broadcastLiveVideoStart()
Generated message:
Ls\tLiveBroadcast\tBroadcast Live Video – Start

 Broadcast Live Video - End

eu.TRIANGLE_project.appinstr.ls.BroadcastLiveVideo.broadcastLiveVideoEnd(<succes
s>)
Generated message:
Ls\tLiveBroadcast\tBroadcast Live Video - End\t<boolean success>

 Broadcast Live Video - First Picture

eu.TRIANGLE_project.appinstr.ls.BroadcastLiveVideo.broadcastLiveVideoFirstPictur

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 216/277

e()
Generated message:
Ls\tLiveBroadcast\tBroadcast Live Video - First Picture

 Video Resolution

eu.TRIANGLE_project.appinstr.ls.BroadcastLiveVideo.videoResolution(<resolution_x
>, <resolution_y>)
Generated message:
Ls\tLiveBroadcast\tVideo Resolution\t<int resolution_x>\t<int resolution_y>

 Broadcast - Stall Start

eu.TRIANGLE_project.appinstr.ls.BroadcastLiveVideo.broadcastStallStart()
Generated message:
Ls\tLiveBroadcast\tBroadcast - Stall Start

 Broadcast - Stall End

eu.TRIANGLE_project.appinstr.ls.BroadcastLiveVideo.broadcastStallEnd()
Generated message:
Ls\tLiveBroadcast\tBroadcast - Stall End

15.4 Social Networking

Post Image

 Post Image - Start
eu.TRIANGLE_project.appinstr.sn.PostImage.postImageStart()
Generated message:
Sn\tPostImage\tPost Image – Start

 Post Image - End

eu.TRIANGLE_project.appinstr.sn.PostImage.postImageEnd(<success>)
Generated message:
Sn\tPostImage\tPost Image - End\t<boolean success>

Post Video

 Post Video - Start
eu.TRIANGLE_project.appinstr.sn.PostVideo.postVideoStart()
Generated message:
Sn\tPostVideo\tPost Video – Start

 Post Video - End

eu.TRIANGLE_project.appinstr.sn.PostVideo.postVideoEnd(<success>)
Generated message:
Sn\tPostVideo\tPost Video - End\t<boolean success>

Post Text

 Post Text - Start
eu.TRIANGLE_project.appinstr.sn.PostText.postTextStart()
Generated message:

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 217/277

Sn\tPostText\tPost Text – Start

 Post Text - End

eu.TRIANGLE_project.appinstr.sn.PostText.postTextEnd(<success>)
Generated message:
Sn\tPostText\tPost Text - End\t<boolean success>

Post File

 Post File - Start
eu.TRIANGLE_project.appinstr.sn.PostFile.postFileStart()
Generated message:
Sn\tPostFile\tPost File – Start

 Post File - End

eu.TRIANGLE_project.appinstr.sn.PostFile.postFileEnd(<success>)
Generated message:
Sn\tPostFile\tPost File - End\t<boolean success>

Show Image

 Social Networking - Image Download Start
eu.TRIANGLE_project.appinstr.sn.ShowImage.socialNetworkingImageDownloadStart()
Generated message:
Sn\tShowImage\tSocial Networking - Image Download Start

 Social Networking - Image Download End

eu.TRIANGLE_project.appinstr.sn.ShowImage.socialNetworkingImageDownloadEnd(<succ
ess>)
Generated message:
Sn\tShowImage\tSocial Networking - Image Download End\t<boolean success>

Play Video

 Social Networking - Play Video Start
eu.TRIANGLE_project.appinstr.sn.PlayVideo.socialNetworkingPlayVideoStart()
Generated message:
Sn\tPlayVideo\tSocial Networking - Play Video Start

 Social Networking - Play Video End

eu.TRIANGLE_project.appinstr.sn.PlayVideo.socialNetworkingPlayVideoEnd(<success>
)
Generated message:
Sn\tPlayVideo\tSocial Networking - Play Video End\t<boolean success>

 Social Networking - Video First Picture

eu.TRIANGLE_project.appinstr.sn.PlayVideo.socialNetworkingVideoFirstPicture()
Generated message:
Sn\tPlayVideo\tSocial Networking - Video First Picture

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 218/277

 Social Networking - Video Resolution
eu.TRIANGLE_project.appinstr.sn.PlayVideo.socialNetworkingVideoResolution(<resol
ution_x>, <resolution_y>)
Generated message:
Sn\tPlayVideo\tSocial Networking - Video Resolution\t<int resolution_x>\t<int
resolution_y>

 Social Networking - Video Stall Start

eu.TRIANGLE_project.appinstr.sn.PlayVideo.socialNetworkingVideoStallStart()
Generated message:
Sn\tPlayVideo\tSocial Networking - Video Stall Start

 Social Networking - Video Stall End

eu.TRIANGLE_project.appinstr.sn.PlayVideo.socialNetworkingVideoStallEnd()
Generated message:
Sn\tPlayVideo\tSocial Networking - Video Stall End

File Downloading

 Social Networking - File Download Start
eu.TRIANGLE_project.appinstr.sn.FileDownloading.socialNetworkingFileDownloadStar
t()
Generated message:
Sn\tFileDownload\tSocial Networking - File Download Start

 Social Networking - File Download End

eu.TRIANGLE_project.appinstr.sn.FileDownloading.socialNetworkingFileDownloadEnd(
<success>)
Generated message:
Sn\tFileDownload\tSocial Networking - File Download End\t<boolean success>

Play Live Video from User

 Social Networking - Live Streaming Start
eu.TRIANGLE_project.appinstr.sn.PlayLiveVideoFromUser.socialNetworkingLiveStream
ingStart()
Generated message:
Sn\tPlayFromUser\tSocial Networking - Live Streaming Start

 Social Networking - Live Streaming End

eu.TRIANGLE_project.appinstr.sn.PlayLiveVideoFromUser.socialNetworkingLiveStream
ingEnd(<success>)
Generated message:
Sn\tPlayFromUser\tSocial Networking - Live Streaming End\t<boolean success>

 Social Networking - Live Streaming First Frame

eu.TRIANGLE_project.appinstr.sn.PlayLiveVideoFromUser.socialNetworkingLiveStream
ingFirstFrame()
Generated message:
Sn\tPlayFromUser\tSocial Networking - Live Streaming First Frame

 Social Networking - Live Streaming Resolution

eu.TRIANGLE_project.appinstr.sn.PlayLiveVideoFromUser.socialNetworkingLiveStream

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 219/277

ingResolution(<resolution_x>, <resolution_y>)
Generated message:
Sn\tPlayFromUser\tSocial Networking - Live Streaming Resolution\t<int
resolution_x>\t<int resolution_y>

 Social Networking - Live Streaming Stall Start

eu.TRIANGLE_project.appinstr.sn.PlayLiveVideoFromUser.socialNetworkingLiveStream
ingStallStart()
Generated message:
Sn\tPlayFromUser\tSocial Networking - Live Streaming Stall Start

 Social Networking - Live Streaming Stall End

eu.TRIANGLE_project.appinstr.sn.PlayLiveVideoFromUser.socialNetworkingLiveStream
ingStallEnd()
Generated message:
Sn\tPlayFromUser\tSocial Networking - Live Streaming Stall End

Search Object

 Social Networking - Search Start
eu.TRIANGLE_project.appinstr.sn.SearchObject.socialNetworkingSearchStart(<succes
s>)
Generated message:
Sn\tSearch\tSocial Networking - Search Start\t<boolean success>

 Social Networking - Search First Result

eu.TRIANGLE_project.appinstr.sn.SearchObject.socialNetworkingSearchFirstResult()
Generated message:
Sn\tSearch\tSocial Networking - Search First Result

15.5 High Speed Internet

File Download

 File Download - Start
eu.TRIANGLE_project.appinstr.hs.FileDownload.fileDownloadStart(<transfer_id>)
Generated message:
Hs\tDownload\tFile Download - Start\t<int transfer_id>

 File Download - End

eu.TRIANGLE_project.appinstr.hs.FileDownload.fileDownloadEnd(<transfer_id>,
<success>)
Generated message:
Hs\tDownload\tFile Download - End\t<int transfer_id>\t<boolean success>

File Upload

 File Upload - Start
eu.TRIANGLE_project.appinstr.hs.FileUpload.fileUploadStart(<success>)
Generated message:

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 220/277

Hs\tUpload\tFile Upload - Start\t<boolean success>

 File Upload - End

eu.TRIANGLE_project.appinstr.hs.FileUpload.fileUploadEnd(<transfer_id>,
<success>)
Generated message:
Hs\tUpload\tFile Upload - End\t<int transfer_id>\t<boolean success>

Pause and Resume Download

 File Download - Pause
eu.TRIANGLE_project.appinstr.hs.PauseandResumeDownload.fileDownloadPause(<succes
s>)
Generated message:
Hs\tDownloadPause\tFile Download - Pause\t<boolean success>

 File Download - Resume

eu.TRIANGLE_project.appinstr.hs.PauseandResumeDownload.fileDownloadResume(<succe
ss>)
Generated message:
Hs\tDownloadPause\tFile Download - Resume\t<boolean success>

Pause and Resume Upload

 File Upload - Pause
eu.TRIANGLE_project.appinstr.hs.PauseandResumeUpload.fileUploadPause(<success>)
Generated message:
Hs\tUploadPause\tFile Upload - Pause\t<boolean success>

 File Upload - Resume

eu.TRIANGLE_project.appinstr.hs.PauseandResumeUpload.fileUploadResume(<success>)
Generated message:
Hs\tUploadPause\tFile Upload - Resume\t<boolean success>

15.6 Virtual Reality

Virtual Reality Session

 Scenario Selected
eu.TRIANGLE_project.appinstr.vr.VirtualRealitySession.scenarioSelected()
Generated message:
Vr\tVrSession\tScenario Selected

 3D Visual Context Loaded

eu.TRIANGLE_project.appinstr.vr.VirtualRealitySession._3DVisualContextLoaded()
Generated message:
Vr\tVrSession\t3D Visual Context Loaded

 Immersion Session Started

eu.TRIANGLE_project.appinstr.vr.VirtualRealitySession.immersionSessionStarted()
Generated message:

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 221/277

Vr\tVrSession\tImmersion Session Started

 Immersion Session Ended

eu.TRIANGLE_project.appinstr.vr.VirtualRealitySession.immersionSessionEnded(<suc
cess>)
Generated message:
Vr\tVrSession\tImmersion Session Ended\t<boolean success>

 Immersion Session Resolution

eu.TRIANGLE_project.appinstr.vr.VirtualRealitySession.immersionSessionResolution
()
Generated message:
Vr\tVrSession\tImmersion Session Resolution

15.7 Augmented Reality

Augmented Reality Session

 Aim To Physical Marker
eu.TRIANGLE_project.appinstr.ar.AugmentedRealitySession.aimToPhysicalMarker()
Generated message:
Ar\tArSession\tAim To Physical Marker

 Aim at Location

eu.TRIANGLE_project.appinstr.ar.AugmentedRealitySession.aimAtLocation()
Generated message:
Ar\tArSession\tAim at Location

 Virtual Layer Displayed

eu.TRIANGLE_project.appinstr.ar.AugmentedRealitySession.virtualLayerDisplayed()
Generated message:
Ar\tArSession\tVirtual Layer Displayed

 Augmentation Session Started

eu.TRIANGLE_project.appinstr.ar.AugmentedRealitySession.augmentationSessionStart
ed()
Generated message:
Ar\tArSession\tAugmentation Session Started

 Augmentation Session Ended

eu.TRIANGLE_project.appinstr.ar.AugmentedRealitySession.augmentationSessionEnded
(<success>)
Generated message:
Ar\tArSession\tAugmentation Session Ended\t<boolean success>

 Clear Augmentation Layer - Start

eu.TRIANGLE_project.appinstr.ar.AugmentedRealitySession.clearAugmentationLayerSt
art()
Generated message:
Ar\tArSession\tClear Augmentation Layer – Start

 Clear Augmentation Layer - End

eu.TRIANGLE_project.appinstr.ar.AugmentedRealitySession.clearAugmentationLayerEn

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 222/277

d(<success>)
Generated message:
Ar\tArSession\tClear Augmentation Layer - End\t<boolean success>

15.8 Gaming

Game Session

 Game Session Start
eu.TRIANGLE_project.appinstr.ga.GameSession.gameSessionStart()
Generated message:
Ga\tGameSession\tGame Session Start

 Game Started

eu.TRIANGLE_project.appinstr.ga.GameSession.gameStarted()
Generated message:
Ga\tGameSession\tGame Started

 Game Session End

eu.TRIANGLE_project.appinstr.ga.GameSession.gameSessionEnd(<success>)
Generated message:
Ga\tGameSession\tGame Session End\t<boolean success>

 Game Content Stall Start

eu.TRIANGLE_project.appinstr.ga.GameSession.gameContentStallStart()
Generated message:
Ga\tGameSession\tGame Content Stall Start

 Game Content Stall End

eu.TRIANGLE_project.appinstr.ga.GameSession.gameContentStallEnd()
Generated message:
Ga\tGameSession\tGame Content Stall End

 Game Video Resolution

eu.TRIANGLE_project.appinstr.ga.GameSession.gameVideoResolution()
Generated message:
Ga\tGameSession\tGame Video Resolution

Pause and Resume

 Game Pause
eu.TRIANGLE_project.appinstr.ga.PauseandResume.gamePause(<success>)
Generated message:
Ga\tGamePause\tGame Pause\t<boolean success>

 Game Resume

eu.TRIANGLE_project.appinstr.ga.PauseandResume.gameResume(<success>)
Generated message:
Ga\tGamePause\tGame Resume\t<boolean success>

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 223/277

Saved Game Session

 Saved Game Load Start
eu.TRIANGLE_project.appinstr.ga.StartSavedGameSession.savedGameLoadStart()
Generated message:
Ga\tSavedGame\tSaved Game Load Start

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 224/277

16 Annex 4: OpenStack API access

In the URLs, the service names need to be replaced with IP addresses from section 10.1.7.

Identity API: http://<Keystone>:5000/v3
The Identity service provided by the Keystone package provides authentication tokens that are
used by the other REST APIs to authenticate and authorize the client. A client first needs to
authenticate itself and the Identity Service and request an authentication token, this authentication
token can then be used for a period of time to make follow-up requests to the other REST APIs.
The exact process is described in[44], though summarizes to the following actions

1. Make an HTTP POST request to the Identity API service containing the headers and data
from Table 64, with variables filled in from Table 50:

2.
Table 64 Identity Service API Request Token

Content-Type: application/json

{

 "auth": {

 "identity": {

 "methods": [

 "password"

],

 "password": {

 "user": {

 "domain": {

 "name": "$OS_USER_DOMAIN_NAME"

 },

 "name": "$OS_USERNAME",

 "password": "$OS_PASSWORD"

 }

 }

 },

 "scope": {

 "project": {

 "domain": {

 "name": "$OS_PROJECT_DOMAIN_NAME"

 },

 "name": "$OS_PROJECT_NAME"

 }

 }

 }

}

3. In response, if authentication succeeds, the Identity API will respond similar to Table 65,

where HTTP 201 created indicates a successful authentication, the HTTP Header X-
Subject-Token indicated the token, and response DATA provides further information about
the session and user account.

Table 65 Identity API Service Authentication Token Response

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 225/277

HTTP 201 Created

X-Subject-Token: d55fa31bec30448386e34e082aa6e0fe
{

 "token": {

 "is_domain": false,

 "methods": [

 "password"

],

 "roles": [

 {

 "id": "9fe2ff9ee4384b1894a90878d3e92bab",

 "name": "_member_"

 },

 {

 "id": "86599d047b944cf4ac64dc5b676518a0",

 "name": "Admin"

 }

],

 "expires_at": "2017-12-13T15:24:39.000000Z",

 "project": {

 "domain": {

 "id": "default",

 "name": "Default"

 },

 "id": "086a8aacd0bc4aaebdb87ba3f8e8a556",

 "name": "admin"

 },

 "user": {

 "password_expires_at": null,

 "domain": {

 "id": "default",

 "name": "Default"

 },

 "id": "056b7395f54c486a85e130f4c69bdc74",

 "name": "admin"

 },

 "audit_ids": [

 "aZRwAlMBRGa_uhjOugT__Q"

],

 "issued_at": "2017-12-13T14:24:39.000000Z"

 }

}

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 226/277

4. Store the token returned in HTTP Header X-Subject-Token into the variable $OS_TOKEN and

include it in the HTTP Header X-Auth-Token in future requests to the other REST APIs. For example,
using curl you can request an overview of all other available APIs from the Identity service: `curl -
v -H "X-Auth-Token: $OS_TOKEN" $OS_AUTH_URL/auth/catalog | python -m json.tool`.
Additionally, you may need the project-id of the OpenStack project you’re authenticated to which is
stored in the JSON-encapsulated response in the property token.project.id and store it into
$OS_PROJECT_ID.

Using this token, the following APIs can be accessed (replace service names with IP addresses from Section
10.1.7 and use the appropriate $OS_PROJECT_ID from a project you are authorized on):

Name Service Type URL
Cinder V3 Volume http://<Cinder-API>:8776/v3/<$OS_PROJECT_ID>
Cinder V2 Volume http://<Cinder-API>:8776/v2/<$OS_PROJECT_ID>
Glance Image http://<Glance>:9292
Nova Compute http://<Nova-Cloud-Controller>:8774/v2/<$OS_PROJECT_ID>
Keystone Identity http://<Keystone>:5000/v2.0
Neutron Network http://<Neutron-API>:9696
Placement
(Nova)

Compute
Placement

http://<Nova-Cloud-Controller>:8778

Heat Orchestration9 http://<Heat>:8004/v1/<$OS_PROJECT_ID>
Heat-CFN CloudFormation-

compatible
Orchestration

http://<Heat>:8000/v1

The OpenStack API Documentation (OpenStack API Documentation, sd) give a full description of all APIs
and their exact commands.

9 Note: a different solution, i.e., Open Source Mano, is used as the orchestrator.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 227/277

17 Annex 5: Sample work-flow

In this annex we will present a sample workflow which can be used by the experimenter using MANO
integrated with TAP. We will show steps needed to create a basic TRIANGLE topology and perform a basic
connectivity test. We assume the experimenter is using the infrastructure (“Stable Cloud5”) described in the
previous sections of this document.

17.1 Bootstrapping environment
We will describe the one-time-effort actions required to bootstrap the environment for a particular
experiment.

17.1.1 Key deployment

Most of the VM images which are to be used in OpenStack environment use the cloud-init mechanism to
preconfigure the images, among others, ssh keys are injected to the instance for authentication. Frequently,
password logins are disabled due to security reasons and the only way to access an instance is to have
public-private key pairs deployed. MANO allows for automation of this process but first needs to have the
public key(s) stored.

1. Open MANO GUI at https://10.20.2.44:8443/launchpad and log in (default credentials are
admin/admin, though these may be changed)

2. Navigate to Launchpad->SSH keys menu
3. Insert a public key and give it a name which will be used in further steps to identify the specific user’s

identity or machine’s deployment key.

Figure 129: Example inserting a public key

17.1.2 Image deployment

Virtual Machines instantiated by MANO are based on the images managed by OpenStack Glance service.
The delivered Stable Cloud5 is pre-populated with common images, however, the experimenters may need
to upload their specific images.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 228/277

1. Download (or prepare) an image source file. The sources for popular images are listed here: [45].
2. Log in to the OpenStack Dashboard at http://10.20.2.43 ; the default credentials are admin/admin

though may be changed.
3. Navigate to Project -> Compute -> Images and press “Create Image” button, see Figure 130.
4. Give an image a name (it will be used to identify it by MANO later on), choose the source file

(downloaded or prepared), configure the right format and give RAM and disk parameters (observe,
that RAM is given in MB while the disk size is given in GB) and press the “Create Image” button,
see Figure 131

Figure 130: Image creation (part 1)

17.2 Preparing descriptors
MANO uses Descriptor packages for Virtual Network Functions (VNFDs) and Network Services (NSDs). In
their most basic form, these are yaml configuration files archived and compressed through tar and gzip,
possibly accompanied by some other auxiliary files (e.g., icons). A collection of sample descriptors can be
found here: [46]. We will now demonstrate how to prepare a basic TRIANGLE topology which constitutes of
three client machines and one server, connected to the same network.

17.2.1 Preparing Virtual Network Function Descriptor

1. Open MANO GUI at https://10.20.2.44:8443/ and log in (default credentials are admin/admin)
2. Navigate to the Catalog menu and press “+ Add VNFD” button. A new VNF and VDU (Virtual

Deployment Unit) appear, see Figure 132
3. Click on the VNF in the main part of the screen and change its name and (after pressing “more” in

the right part of the screen) its ID, see Figure 133. After pressing “Update” a new VNFD (with its
newly chosen name) will appear on the right hand side due to selecting a new ID. Make sure you
continue with configuring this specific VNFD. An old VNFD (vnfd-1) can be deleted.

4. Scroll down to “Connection Point” (“more” must be pressed earlier) and rename it to “eth0” (Figure
134)

5. Click on VDU in the middle of a screen. Adjust its Name, VM flavor (make sure the values here meet
the minimal requirements for a given image, see Section 17.1.2), Image name (make sure it exists
in OpenStack), External Interface (changed in previous bullet) and ID, see Figure 135. Press
Update to save the changes.

6. Return to the VNF config and adjust connectivity, as VDU id has just been changed (Figure 136)

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 229/277

7. For the reference, the yaml configurationfile containing the resulting descriptors is provided in Table
66

Figure 131: Image creation (part 2)

Figure 132: VNFD creation (adding VNDF 1)

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 230/277

Figure 133: VNFD creation (name and ID)

Figure 134: VNFD creation (connectivity)

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 231/277

Figure 135: VNFD creation (VDU details)

Figure 136: VNFD creation (VNF connectivity)

Table 66 Sample client VNFD

ubuntu_2c_2G_1iface_vnf

 id: "ubuntu_2c_2G_1iface_vnfd"

 name: "ubuntu_2c_2G_1iface_vnf"

 short-name: "ubuntu_2c_2G_1iface_vnf"

 vendor: "TNO"

 description: "A simple VNF descriptor w/ one VDU"

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 232/277

 version: "1.0"

 mgmt-interface:

 vdu-id: "ubuntu_2c_2G_1iface_vnfd-VM"

 connection-point:

 -

 name: "eth0"

 type: "VPORT"

 vdu:

 -

 id: "ubuntu_2c_2G_1iface_vnfd-VM"

 name: "ubuntu_2c_2G_1iface_vnfd-VM"

 description: "ubuntu_2c_2G_1iface_vnfd-VM"

 vm-flavor:

 vcpu-count: 2

 memory-mb: 2048

 storage-gb: 20

 guest-epa:

 cpu-pinning-policy: "ANY"

 image: "Ubuntu 16.04 LTS"

 supplemental-boot-data:

 boot-data-drive: "false"

 external-interface:

 -

 name: "eth0"

 vnfd-connection-point-ref: "eth0"

 virtual-interface:

 type: "OM-MGMT"

 vpci: "0000:00:0a.0"

 bandwidth: 0

 service-function-chain: "UNAWARE"

 meta: "{\"containerPositionMap\":{\"a66a5a22-5fc0-4c82-87fe-
a4a41a90751d\":{\"top\":30,\"left\":260,\"right\":510,\"bottom\":85,\"width\
":250,\"height\":55},\"a66a5a22-5fc0-4c82-87fe-a4a41a90751d/vdu-
1\":{\"top\":130,\"left\":260,\"right\":510,\"bottom\":185,\"width\":250,\"h
eight\":55},\"ubuntu_2c_2G_1iface_vnf\":{\"top\":30,\"left\":260,\"right\":5
10,\"bottom\":85,\"width\":250,\"height\":55},\"ubuntu_2c_2G_1iface_vnf/vdu-

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 233/277

1\":{\"top\":130,\"left\":260,\"right\":510,\"bottom\":185,\"width\":250,\"h
eight\":55},\"ubuntu_2c_2G_1iface_vnf/ubuntu_2c_2G_1iface_vnf\":{\"top\":130
,\"left\":260,\"right\":510,\"bottom\":185,\"width\":250,\"height\":55},\"ub
untu_2c_2G_1iface_vnf/ubuntu_2c_2G_1iface_vnfd-
\":{\"top\":130,\"left\":260,\"right\":510,\"bottom\":185,\"width\":250,\"he
ight\":55},\"ubuntu_2c_2G_1iface_vnf/ubuntu_2c_2G_1iface_vnfd-
VM\":{\"top\":130,\"left\":260,\"right\":510,\"bottom\":185,\"width\":250,\"
height\":55},\"ubuntu_2c_2G_1iface_vnfd\":{\"top\":30,\"left\":260,\"right\"
:510,\"bottom\":85,\"width\":250,\"height\":55},\"ubuntu_2c_2G_1iface_vnfd/u
buntu_2c_2G_1iface_vnfd-
VM\":{\"top\":130,\"left\":260,\"right\":510,\"bottom\":185,\"width\":250,\"
height\":55}}}"

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 234/277

18 Annex 6: DEKRA Performance Tool Capabilities
This annex summarizes the list of measurement capabilities provided by the DEKRA wireless
Performance Tool which have been integrated into release 1 of the TRIANGLE testbed.

18.1 QoS Measurements

Table 67 Performance Tool QoS Measurement Capabilities

QoS Measurements

KPI Resolution One KPI record per Layer 7 SDU

Throughput
Over Time, Average, CDF (Cumulative Distributed Function),
PDF (Probability Distributed Function)

One-way Delay Over Time, Average, CDF, PDF, Percentile (t)

One-way Delay Variation Over Time, Average, CDF, PDF, Percentile (t)

One-way Packet Loss Rate Over Time, Average, Consecutive Loss Packets

One-way Packet Loss Distribution RTT, Number of retransmissions, Duplicated ACK, Windows Size

Others Inter-Departure-Time, Inter-Arrival-Time

18.2 API-Driven QoE Measurements

Table 68 Performance Tool QoE Measurement Capabilities

App QoE Measurement

VoIP Estimated MOS

YouTubeTM
Playback Quality (t), Playback Time (t), Quality Usage CDF, Playback
Size/Duration, Bufferings, MOS*

SpotifyTM Track Size, Playback Duration, Bufferings, MOS*

FacebookTM Time to post text/pic/video

Web Browsing Time to load web page

File Transfer Time to transfer the file

Ping RTT

* estimaded MOS

18.3 RF and System Measurements at UE

Table 69 Performance Tool RF and System Measurements

Type Measurements

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 235/277

WLAN RSSI, Noise Level, PHY Rate, Channel, SSID, Link Quality, Roaming

3G/GPRS MNC, MMC, LAC, RSSI, BER, RAT, Cell-Id

CDMA/EVDO System ID, Network ID, BSID, Cell-Id, RSSI, ECIO

LTE Cell-Id, TAC, RSSI, RSRQ, RSRP, SNR

System
Data Connection In Use (WLAN/Cellular), Data Interface Usage (Mbit/s), Battery
(%), CPU Usage (%), GPS coordinates

18.4 Built-in Traffic Generator

Table 70 Performance Tool Built-In Traffic Generator

Type Properties

Protocols TCP, UDP, IPv4, IPv4

SDU Size
Constant, Uniform, Exponential, Pareto, Cauchy, Normal, Poisson, Gamma,
Weibull SDU Inter-Departure

Time

Pre-defined Profiles
VoIP (MOS), Max. Performance, Online Gaming, RTP video, Live TV, Live Radio,
PTT

Supported Patterns Ramps, Bursts, Loops

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 236/277

19 Annex 7: WLAN Automation and LWIP validation results
This annex contains more relevant results from the validation of the WLAN AP automation
feature which has developed in the Release 4 of the TRIANGLE testbed.

Test 1: WLAN On/Off

LTE: 50 %, WLAN: 50%

t = {0. 60} : LTE On, WLAN AP On

t = {60. 120}: LTE On, WLAN AP Off

t = {120. 300}: LTE On, WLAN AP On

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 237/277

Test 2: WLAN Transmission Power

LTE: 50 %, WLAN: 50%

t = {0. 60}: LTE On, WLAN AP On at 100% tx level

t = {60. 300}: LTE On, WLAN AP On at 10% tx level

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 238/277

Test 3: WLAN Channel Change

LTE: 50 %, WLAN: 50%

t = {0. 180}: LTE On, WLAN AP On at channel 1

t = {180. 300}: LTE On, WLAN AP On at channel 11

In this test, the WLAN channel change is not seamless and the Wi-Fi client needs some time
(around 10 seconds) to get the WLAN link up and transmitting on the new channel

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 239/277

20 Annex 8: Robotic Arm Implementation Details
This annex contains the details about the remote-control interface (integration with TAP) exposed
by the robotic arm platform.

SET WRITE MODE

Sets the capture mode.

 ON: It saves all the captured screenshots to disk. Use this mode to obtain the target files
for testing.

 OFF: It does not save the captured screenshots to disk. Use this mode for testing.

Syntax

APP:SETWRITEMODE mode

Parameters

RESET

Check that the robotic arm is operational and then it sets yaw, pitch and roll to 0.

Syntax

ARM:RESET

Parameters

None.

Name Type Possible values

Mode string {on, off}

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 240/277

ROLL

Roll the arm to a given position at a given speed.

Syntax

ARM:ROLL value, speed

Parameters

Name Type Possible values

value integer -90, 90

speed enum VERY_LOW, LOW, MEDIUM, HIGH

PITCH

Pitch the arm to a given position at a given speed.

Syntax

ARM:PICTH value, speed

Parameters

Name Type Possible values

value integer -90, 90

speed enum VERY_LOW, LOW, MEDIUM, HIGH

YAW

Yaw the arm to a given position at a given speed.

Syntax

ARM:YAW value, speed

Parameters

Name Type Possible values

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 241/277

value integer -180, 180

speed enum VERY_LOW, LOW, MEDIUM, HIGH

START SCREEN CAPTURE

Starts screen mirroring engine.

Invoke this function before any other function from Device Interface group.

Syntax

OBJECT:START orientation

Parameters

Name Type Possible values

orientation integer {VERTICAL, HORIZONTAL}

STOP SCREEN CAPTURE

Stops screen mirroring engine.

Syntax

OBJECT:STOP

Parameters

None

TAP AT LENS CENTER

Taps at the lens (VR view) center.

This function does not provoke any movement of the arm.

Syntax

OBJECT:TAPATLENSCENTER

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 242/277

Parameters

None.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 243/277

FIND AND TAP AT OBJECT

Finds one object and tap at its center.

This function does not provoke any movement of the arm.

Syntax

OBJECT:FINDANDTAP delay, number, objects

Parameters

Name Type Possible values

delay double {0, 60}

number integer {1, 10}

objects string Target image file name. Size of “number”.

FIND AND SWIPE AT OBJECT

Finds one object from the device screen and swipe at its center.

This function does not provoke any movement of the arm.

Syntax

OBJECT:FINDANDSWIPE delay, number, objects

Parameters

Name Type Possible values

Delay double {0, 60}

Number integer {1, 10}

objects string Target image file name. Size of “number”.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 244/277

MOVE FIND AND TAP AT OBJECT

Moves the robotic arm until the device screen shows one object, and then it taps at the object
center.

Syntax

OBJECT:MOVEFINDANDTAP delay, number, objects

Parameters

Name Type Possible values

delay double {0, 60}

number integer {1, 10}

objects string Target image file name. Size of “number”.

MOVE FIND AND AIM AT OBJECT

Moves the robotic arm until the device screen shows one object, and then it moves the robotic arm
until the object gets at the center of the lens aim.

Syntax

OBJECT:MOVEFINDANDAIM delay, number, objects

Parameters

Name Type Possible values

delay double {0, 60}

number integer {1, 10}

objects string Target image file name. Size of “number”.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 245/277

FIND AND MEASURE

Measures the time until finds one object in the device screen. This function implements the
performance indicator “time to load an object”.

This function does not provoke any movement of the arm.

Syntax

OBJECT:FINDANDMEASURE number, objects

Parameters

Name Type Possible values

number integer {1, 10}

objects string Target image file name. Size of “number”.

START SCREEN CAPTURE

Starts screen mirroring engine.

Invoke this function before any other function from Device Interface group.

Syntax

OBJECT:START orientation, [real width], [real height], virtual
height, matching score

Parameters

Name Type Possible values

orientation integer {VERTICAL, HORIZONTAL}

real width Integer {1:1440}

real height Integer {1:2960}

virtual height Integer {1:2960}

matching score Integer {0:100}

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 246/277

FIND AND PRESS AT OBJECT

Finds one object and press at its center.

This function does not provoke any movement of the arm.

Syntax

OBJECT:FINDANDPRESS delay, number, objects, duration, timeout

Parameters

Name Type Possible values

delay double {0, 60}

number integer {1, 10}

objects string Target image file name. Size of “number”.

duration integer Duration of the press action in milliseconds: {50:10000}

timeout integer {1:300} seconds

FIND TAP AND MEASURE

Finds and taps on a target image and it measures the time to find a second image. This function
implements the performance indicator “lagging”.

Syntax

OBJECT:FINDTAPANDMEASURE first, second, timeout

Parameters

Name Type Possible values

first string
First target image file name on which the system will send
the “tap” event.

second string
Second target image file name on which the system will
calculated time to appears on the device screen.

timeout integer {1:300} seconds

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 247/277

FIND PRESS AND MEASURE

Finds and presses on a target image and it measures the time to find a second image. This function
implements the performance indicator “lagging”.

Syntax

OBJECT:FINDPRESSANDMEASURE first, second, timeout

Parameters

Name Type Possible values

first string
First target image file name on which the system will send
the “press” event.

second string
Second target image file name on which the system will
calculated time to appears on the device screen.

timeout integer {1:300} seconds

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 248/277

21 Annex 9: TRIANGLE Report
The following report has been automatically generated by the Release 4 of the TRIANGLE web
portal.

Tested Item

Type of product App

Product name com.google.android.exoplayer2.demo

SW version 2804

Operating system Android

OS version <S8_OS>

Supported use cases Content Distribution Streaming Services

Supported features Media File Playback

Test Lab

Lab UMA
Calle Arquitecto Francisco Peñalosa 18, 29010 Málaga

Testing period Testing started on 2018-12-01 and finished on 2018-12-01

Date 2018-12-01

TRIANGLE mark

Compliance IN COMPLIANCE

Score TRIANGLE mark score 3.93

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 249/277

1 Identification of the test environment

1.1 Reference devices (only for Apps)

Following mobile phones have been used as hosts for the App

Ref Description HW
version

SW
version

Serial number

4 Samsung Galaxy S8 <S8> <S8_OS> ce11171b9acc0d3205

2 Identification of the test equipment
The testbed used to perform the testing is composed by the following equipment:

Reference Equipment Serial Number

1 E7515A UXM Wireless Test Set TH53460091-01

2 N6705 DC Power Analyzer DC451357

3 Test Results
The following table provides a summary of the test cases performed to obtain the TRIANGLE
mark

Test case Result

AUE/CS/001 Pass

AEC/CS/001 Pass

RES/CS/001 Pass

Note: The results relate only to the items tested.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 250/277

22 Annex 11: TRIANGLE Mark

22.1 KPI computation
The following KPIs have been computed from the measurements performed in the test cases
listed in section 3.

Domain KPI Result

Device Resources
Usage

average Non Interactive Playback average CPU
usage [HS_DP]

4.722

Device Resources
Usage

average Non Interactive Playback average Memory
usage [HS_DP]

2.827

Device Resources
Usage

average Non Interactive Playback average CPU
usage [SU_FE]

4.741

Device Resources
Usage

average Non Interactive Playback average Memory
usage [SU_FE]

2.82

Device Resources
Usage

average Non Interactive Playback average CPU
usage [SU_SB]

4.774

Device Resources
Usage

average Non Interactive Playback average Memory
usage [SU_SB]

2.829

Device Resources
Usage

average Non Interactive Playback average CPU
usage [SU_SO]

4.744

Device Resources
Usage

average Non Interactive Playback average Memory
usage [SU_SO]

2.833

Device Resources
Usage

average Non Interactive Playback average CPU
usage [SU_ST]

4.766

Device Resources
Usage

average Non Interactive Playback average Memory
usage [SU_ST]

2.819

Device Resources
Usage

average Non Interactive Playback average CPU
usage [UR_DN]

4.754

Device Resources
Usage

average Non Interactive Playback average Memory
usage [UR_DN]

2.804

Device Resources
Usage

average Non Interactive Playback average CPU
usage [UR_DT]

4.715

Device Resources
Usage

average Non Interactive Playback average Memory
usage [UR_DT]

2.8

Device Resources
Usage

average Non Interactive Playback average CPU
usage [UR_IB]

4.814

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 251/277

Device Resources
Usage

average Non Interactive Playback average Memory
usage [UR_IB]

2.821

Device Resources
Usage

average Non Interactive Playback average CPU
usage [UR_IO]

4.762

22.2 TRIANGLE mark
The TRIANGLE mark detailed below has been obtained from the KPIs indicated in previous
section.

Domain Score

Device Resource Usage 3.79

Energy Consumption 4.76

User Experience 3.23

TRIANGLE
MARK

Spider diagram

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 252/277

23 Annex 10: DEKRA wireless Performance Tool Automation
Interface

23.1 Interface Description
DEKRA-Controller is constituted by two separate processes: The graphical user interface (GUI)
and the controller itself (PerformanceTester.exe).

The automation described in this annex consists on replacing the DEKRA-Controller GUI
process by an external Automation Suite as depicted in the figure below.

Figure 137 DEKRA wireless Performance Automation Interface (rel'1)

Basically, the Automation Suite shall launch the process PerformanceTester.exe to execute a
measurement:

C:\Program Files (x86)\DEKRA wireless Performance Tool
Controller\PerformanceTester.exe Input.xml

The process PerformanceTester.exe needs one argument called Input.xml which contains the
required configuration to execute the measurement.

 Input.xml is a file generated by the GUI process right after “Play” button is clicked by
the User in the regular way (i.e., commanded by User through GUI). This file contains
all the configuration information (agents, data profiles, etc.).

 Input.xml is described in section 3.

The Automation Suite can use stdin (section 4) and stdout (section 5) streams to exchange
information with the process PerformanceTester.exe while the measurement is running.

PerformanceTester.exe generates the results files of the test in a folder that can be learned
by the automation suite from stdout messages.

23.2 Recommended automation methodology
The recommended automation methodology is to record into an XML file, the set of steps by
first executing them manually.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 253/277

To do so, for a given test case (Test Case A):

1. Open the GUI

2. Create the Configuration in the GUI

3. Click Play button (even if the test setup is not ready, the XML file is generated just after
clicking Play button

4. Go to %TEMP% and catch “Input.xml”.

5. Rename “Input.xml” to “Test_Case_A_input.xml”

For other test cases repeat steps 2 through 5. At the end a sort of library of reference input XML
files should be available.

Accordingly, the Automation Suite (e.g., script) can be something like this:

//Input Parameters:

 A. Test_Case_X_input.xml for a given Test Case “X”
 B. Actual Agents Information
 C. Number of iterations

//Script Content

Actual_Input.xml=Modify(Test_Case_X_input.xml,B)

For i=0;i<C

 execute(PerformanceTester.exe Actual_Input.xml)

The goal of generating the reference XML files before executing any test case is to minimize
the complexity of the “Modify” function in the Automation Suite.

Ideally, once this is done, the Automation Suite should just need to change DEKRA-Agents IP
addresses from the XML file. The script should not need to modify more fields from the XML
file.

23.3 Input XML file
This section describes the structure of Input.xml file.

All fields are mandatory.

The fields that may need to be modified in the Automation Suite have been highlighted in red.

<input>
 <CaptureTraffic>
 <main_path/> Working directory of the tool (1)
 <temp_path/> Temp folder of the system
 <session_folder/> Name of the project (1)

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 254/277

<time_folder/> If set to “none”, folder with data and time will be created. Otherwise the given folder will be used to
store the results (folder must exist) (10)

 <repetition_folder>none</repetition_folder> Do not modify
 <PTversion>50007</PTversion> Do not modify
 <pt_user>DEKRA wireless</pt_user> Do not modify

<generate_record_file>0</generate_record_file> GUI: Post Mortem Recovery (1:Yes, 0:No) Do not modify
 <record_file_interval>60</record_file_interval> GUI: Interval Between Backups. Do not modify
 <delete_record_file>1</delete_record_file> GUI: Delete Backup Files After Test. Do not modify
 <basic_mode/> GUI: Test Mode (0: Basic Mode, 1: Advanced Mode)
 <using_wpcap/> GUI: Test Mode (0: L7 Mode, 1: L3 Mode)
 <time_duration>87000</time_duration> Do not modify
 <packet_duration>50000000</packet_duration> Do not modify
 <waiting_client_agents/> GUI: Control Plane Connection Timeout
 <waiting_server_agents/> GUI: Control Plane Connection Timeout
 <packet_loss_th/> GUI: Loss Threshold
 <poisson_lambda/> GUI: Graph Resolution
 <thput_PDF_interval/> GUI: Thput PDF Width (kbit/s)
 <delay_PDF_interval/> GUI: OWD/IPDV PDF Width
 <jitter_PDF_interval/> GUI: OWD/IPDV PDF Width
 <peak_percentile/> GUI: Peak Definition
 <wifi_interval>1000</wifi_interval> Do not modify
 <cell_interval>1000</cell_interval> Do not modify
 <generate_XML>0</generate_XML> Do not modify
 <compensate_clock_skew>1</compensate_clock_skew> Do not modify
 <max_jitter_supported/> GUI: Maximum Jitter
 <target_layer/> GUI: L3 Target Layer
 <sessionrestoretime/> GUI: Reconnection Period
 <maxconnectattempts/> GUI: Max Reconnection Attempts
 <udpnatkeepaliveinterval/> GUI: UDP NAT KeepAlive Period
 <udpnatkeepalive/> GUI: UDP NAT KeepAlive During Traffic Flow
 <tcpconnecttimeout/> GUI: Data Plane Connection Timeout
 <udpconnecttimeout/> GUI: Data Plane Connection Timeout
 <resenddata/> GUI: Retransmission Period
 <pt_os/> Version of Windows
 <pt_cpus/> Number of CPUs
 <pt_parallelw2008/> Parallelization in control plane
 <remove_samples/> GUI: Remove samples from KPI
 <graph_resolution/> GUI: Graph Size
 <graph_extension/> GUI: Graph Extension
 <generate_vector_delay/> GUI: Save KPI at Packet Level
 <generate_vector_jitter/> GUI: Save KPI at Packet Level
 <generate_vector_loss/> GUI: Save KPI at Packet Level
 <generate_vector_packetsize/> GUI: Save KPI at Packet Level
 <generate_vector_idt/> GUI: Save KPI at Packet Level
 <generate_vector_txtime/> GUI: Save KPI at Packet Level
 <map_max_thr/> GUI: Map Tput Max Value
<number_of_MP/> Number of Agents participating in the test. Each of them represented in a <MP> structure
 <MP>
 <caption/> GUI: Caption

10 Results are generated at <main_path><session_folder><time_folder>

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 255/277

 <index/> Agent Index: starting at 0, must be incremental
 <mode>PASSIVE</mode> Control Plane Mode: Do not modify
 <identifier>Agent1</identifier> Client Mode ID: Do not modify
 <version>50007</version> Version of the Agent (5.00.07) Must match!
 <capture_data/> If the Agent must capture data in L3 (0:No, 1:Yes)
 <wifi_stats/> GUI: Capture WLAN Parameters
 <wifi_scanning/> GUI: Capture WLAN Neighbours Parameters
 <external_wifi/> GUI: Obtain WLAN Info Remotely From (-1: Unused, Other: MP index)
 <cell_stats/> GUI: Capture Cellular Parameters
 <external_cell/> GUI: Obtain Cellular Info Remotely From (-1: Unused, Other: MP index)
 <system_stats>1</system_stats> Capture System Stats: Do not modify
 <com_port>None</com_port> GUI: Cellular COM Port (Windows only) Do not modify
 <sim_pin>None</sim_pin> GUI: Cellular SIM PIN (Windows only) Do not modify
 <gps_stats/> GUI: Capture GPS Info
 <external_gps/> Obtain GPS Info Remotely From (-1: Unused, Other: MP index)
 <is_sniffer>no</is_sniffer> Do not modify
 <sniffer_mac_offset>0</sniffer_mac_offset> Do not modify
 <management_ip/> GUI: Control IP
 <management_port/> GUI: Control Port
 <data_ip/> GUI: Data IP
 <phone_number>None</phone_number> Do not modify
 <number_of_attenuator>0</number_of_attenuator> Do not modify
 <number_of_ap_automation>0</number_of_ap_automation> Do not modify
 <number_of_powersources>0</number_of_powersources> Do not modify
 <number_of_turntables>0</number_of_turntables> Do not modify
 <wifi_monitor>0</wifi_monitor> Do not modify
 <use_dsla>0</use_dsla> Do not modify
 <dev_control>0</dev_control> Do not modify
 </MP>
 <number_of_flows/> Number of Flows in the test. Each of them represented in a <flow> structure
 <flow>
 <caption/> GUI: Caption
 <index/> Flow Index: starting at 0, must be incremental
 <group/> GUI: Group
 <streams> GUI: TCP Streams. For UDP set to 1
 <generateTraffic/> 1: Data Traffic Generator, 0: Data Traffic Monitor (L3)
 <MP_DSCP/> DSCP filter for L3, -1 to ignore
 <MP_SPI>0</MP_SPI> Do not modify
 <MP_transport/> Transport protocol filter for L3 (UDP/TCP)
 <MP_src_port/> Source port filter for L3, 0 to ignore
 <MP_dst_port/> Destination port filter for L3, 0 to ignore
 <MP_pdu_size/> PDU size filter for L3, 0 to ignore
<number_of_MPs_participating/> Number of Agents participating in flow (could be >2 if using Via) for L3. Each of
them represented in a <MP_info> structure
 <MP_info>
<MP_index/> Index of the Agent participating (matching <MP><index>)
<source_ip_address/> Source IP address filter for L3 for this Agent
<destination_ip_address/> Destination IP address filter for L3 for this Agent
 </MP_info>
 <is_MOS/> Compute MOS stats for this flow (should be UDP flow)
 <jBuffer/> GUI: Jitter buffer

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 256/277

 <codec/> If MOS stats computed, which codec should apply
 <TG_configure_trigger>0</TG_configure_trigger> Do not modify

<TG_configure_delay/> GUI: If “Configure before Delay”: 0, If “Configure after Delay”: Delay of the flow
 <TG_start_trigger>0</TG_start_trigger> Do not modify
 <TG_start_delay/> GUI: Delay of the flow (ms)
 <TG_end_trigger>0</TG_end_trigger> Do not modify
 <TG_end_delay/> GUI: Duration of the flow (ms)
 <TG_transport/> GUI: Transport Protocol
 <TG_max_datarate/> GUI: Max Performance
 <TG_data_port/> GUI: Transport Port
 <TG_traffic_mode/> "active": Receiver acts as Server, "passive”: Receiver acts as Client
 <TG_ip_sender_data/> Local IP address of the Sender
 <TG_ip_sender_data_public/> Public IP address of the Sender
 <TG_ip_receiver_data/> Local IP address of the Receiver
 <TG_ip_receiver_data_public>Public IP address of the Receiver
 <TG_number_steps>Number of TG Steps. Each of them represented in a <TG_step> structure
 <TG_repeat_steps> GUI: 0: Normal Mode, 1: Loop Mode
 <TG_step>

<step_duration>86400000</step_duration> Duration of the step in ms. If it’s the last step, set to 86400000
<idt_type>C</idt_type> GUI: Type of SDU Rate, C for Constant
<pkts_per_s1>830</pkts_per_s1> GUI: Number of SDU/s
<ps_type>c</ps_type> GUI: Type of Packet Size, c for Constant
<pkts_size1>753</pkts_size1> GUI: SDU Size

 </TG_step>
 </flow>
 <number_of_voice_calls>0</number_of_voice_calls> Do not modify
 </CaptureTraffic>
</input>

23.4 Stdin Interface
Once PerformanceTester.exe is launched, it can be commanded with two different
commands which must be sent to the process using the stdin interface.

- “C\n”: Stops the test. It is equivalent to clicking the Stop button (when operated by the
GUI). This command is ignored if it is not sent between the occurrence of the stodout
messages: “Capturing Traffic Starts” and “Capturing Traffic Ends”.

- “AX\n”: Ignore Agent with index X. Agent with index X will be ignored for the rest of the
test (will be considered disconnected). Take into account that the Agent will continue
performing the actions if it was configured to, and has not been stopped. It is equivalent
to clicking Force Stop button (when operated by the GUI).

23.5 Stdout Interface
Once PerformanceTester.exe is launched, the process sends log messages through the
stdout interface.

Each output line includes date and time (2016-03-07 08:32:23 – <log>). This string (date and
time) has been omitted from the examples below for simplicity. Some other log messages have
been also removed for simplicity.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 257/277

The log messages are also written in the Controller_log_PT.txt file.

The following general rules apply to the logs generated by PerformanceTester.exe:

 <mp><x> refers to the Agent defined in the input.xml with index “x”
 <flow><x> refers to the Flow defined in the input.xml with index “x”
 <flow><x><mp><y> refers to the Flow defined in the input.xml with index “x”. “y”

indicates the agent participating in the flow (0 refers to the sender, 1 to the receiver)

The messages logs that can be interesting to be parsed by the Automation Suite have been
highlighted in red in the next subsections.

23.5.1 Start of test messages
Below is an example of "start of test" log messages.

<pm><info><general><time_path>2016-04-06 08h 42m 28s</time_path></general></info></pm>
<pm><info><general><path>C:\Users\Administrator\Documents\DEKRA Performance Tool\CPU
Performance\2016-04-06 08h 42m 28s</path></general></info></pm>

Important: This log message indicates the root folder where the results files will be stored. In
this example: C:\Users\Administrator\Documents\DEKRA Performance Tool\CPU
Performance\2016-04-06 08h 42m 28s\

Below is an example log messages that show when the execution phase starts.

<pt><version><32 bit>5.0.7<
<pt><sessionID>1457335943<
ConnectionPhase
===============
<pm><info><mp><x>Connecting...</x></mp></info></pm>
<pm><info><mp><x>Connected</x></mp></info></pm>
<pm><info><general>ConnectionPhase successfully done!</general></info></pm>

ConfigurationPhase
==================
<pm><info><mp><x>Configuring...</x></mp></info></pm>
<pm><info><general>ConfigurationPhase successfully done!</general></info></pm>

SynchronizationPhase
====================
<pm><info><mp><x>Calibrating...<
<pm><info><mp><x><sync_prog>0 to 100 value</sync_prog></0></mp></info></pm>
<pm><info><mp><x>Sync done<
<pm><info><general>SynchronizationPhase successfully done!</general></info></pm>

TestExecutionPhase
==================
<pm><info><general>Capturing Traffic Starts...</general></info></pm>

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 258/277

At this point the test has started. During the execution of the test, and before the reception of
the “end time” message, the test can be stopped writing “C\n” in the stdin of
PerformanceTester.exe

23.5.2 Traffic Flows Messages
Below is an example of "traffic flows" log messages.

<tg><info><flow><x>Traffic Flow Configured received from MP0
<tg><info><flow><x>Traffic Flow Started received from MP0
<tg><info><flow><x>Traffic Flow Ended received from MP0

<pm><info><general>Capturing Traffic Ends!</general></info></pm>
<pm><info><mp><x>Stopping Generation...<
<pm><info><mp><x>Stopping...<

SynchronizationPhase
====================
<pm><info><mp><x>Calibrating...<
<pm><info><mp><x><s2ync_prog>0 to 100 value</s2ync_prog></0></mp></info></pm>
<pm><info><mp><x>Sync done<
<pm><info><general>SynchronizationPhase2 successfully done!</general></info></pm>

GetRecordsPhase
===============
<pm><info><mp><x>GettingRecords...<
…
<pm><info><general>GetRecordsPhase successfully done!</general></info></pm>

Start of Test: 1457335945s 375005us
End of Test: 1457335957s 285005us
RFC5835 Duration 11 s 910000 us, 12 intervals of 1000 ms<

<pm><info><general><devices><results>\Devices\</results></devices></general></info></pm>

<pm><info><general><mp><x><agent_path>\AgentCaption\<

\AgentCaption\ stands for the relative folder where results for Agent (e.g., RSSI capture, battery,
etc.), with index “x”, are being stored. Folder name matches Agent caption given in input.xml.
In this example: C:\Users\Administrator\Documents\DEKRA Performance Tool\CPU
Performance\2016-04-06 08h 42m 28s\Agent Caption\

<pm><info><mp><x>Computing System results for Agent2<
<pm><info><mp><x><system><first_battery>10<
<pm><info><mp><x><system><last_battery>10<
<pm><info><mp><x><system><battery_duration>-1<
<pm><info><mp><x><system><avg_cpu>36.69<
<pm><info><mp><x><system><max_cpu>51<
<pm><info><general><mp><x>Total computation time: 0 s<

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 259/277

Example of output for UDP

Outputs for flows depends on the Mode (L3/L7, Basic/Advanced)

<pm><info><flow><x><mp><0><data_rate>5.000<
<pm><info><flow><x><mp><0><max_dr>5.000<
<pm><info><flow><x><mp><0><peak_dr>5.000<
<pm><info><flow><x><mp><1><delay_av>1.707<
<pm><info><flow><x><mp><1><delay_med>0.561<
<pm><info><flow><x><mp><1><delay_min>0.409<
<pm><info><flow><x><mp><1><loss>0.000<
<pm><info><flow><x><mp><1><period>0<
<pm><info><flow><x><mp><1><jitter>0.475<
<pm><info><flow><x><mp><1><data_rate>5.002<
<pm><info><flow><x><mp><1><max_dr>5.018<
<pm><info><flow><x><mp><1><peak_dr>5.018<
<pm><info><flow><x><results>\Flow 0 (Agent1~Agent2@UDP-5M)<

The path in the last line is the relative folder where results for Flow “x” will be stored. Folder
name matches Flow caption given in input.xml. In this example:
C:\Users\Administrator\Documents\DEKRA Performance Tool\CPU Performance\2016-04-06
08h 42m 28s\ Flow 0 (Agent1~Agent2@UDP-5M\

-Example of output for TCP

Outputs for flows depends on the Mode (L3/L7, Basic/Advanced)

<pm><info><flow><x><mp><1><throughput>5.000<
<pm><info><flow><x><mp><1><max_throughput>4.999<
<pm><info><flow><x><mp><1><peak_throughput>4.999<
<pm><info><flow><x><mp><1><delay_av>0.021<
<pm><info><flow><x><mp><1><jitter>0.009<
<pm><info><flow><x><mp><1><data_txmed>6.275<

The average KPI results from flow <x> are highlighted above.

<pm><info><flow><x><results>\Flow 0 (Agent1~Agent2@TCP-5M)<

The path in the last line is the relative folder where results for Flow “x” will be stored. Folder
name matches Flow caption given in input.xml. In this example:
C:\Users\Administrator\Documents\DEKRA Performance Tool\CPU Performance\2016-04-06
08h 42m 28s\ Flow 0 (Agent1~Agent2@TCP-5M\

<pm><info><flow><x>Generating TXT Data ...<
<pm><info><flow><x>TXT Data generation time: 0 s<
<pm><info><flow><x>Generating Graphs ...<
<pm><info><flow><x>Graphs generation time: 0 s<

<pm><info><flow><x><mp><0><data_txrx>6.245<
<pm><info><flow><x><mp><1><data_txrx>6.245<
<pm><info><flow><x><mp><0><time_txrx>9.993<

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 260/277

<pm><info><flow><x><mp><1><time_txrx>9.988<
<pm><info><flow><x>Total computation time: 1 s<

<pm><info><group><1><average>5.002<
<pm><info><group><1><peak>5.018<
<pm><info><general><groups>Generating Groups Graphs...</groups></general></info></pm>
<pm><info><group><1><path>\Groups\Group 1\<

<pm><info><group><1><all_flows>;0;
<pm><info><general>Graphs plotting OK</general></info></pm>

This indicates that the flows have ended correctly (results can be read from their respective
folders). If the process ends and this line does not appear, an error has occurred.

Device Automation Tasks Messages
Example of output for Web Browsing

<pm><info><mp><x><devcontrol><web><avg_setup>0.136<
<pm><info><mp><x><devcontrol><web><avg_session>1.484<
<pm><info><mp><x><devcontrol><web><avg_data_rate>1.390<
<pm><info><mp><x><devcontrol><web><success>100.00<
<pm><info><mp><x><devcontrol><web><failed>0.00<
<pm><info><mp><x><devcontrol><web><dropped>0.00<
<pm><info><mp><x><devcontrol><web><total>1<

Example of output for Youtube
<pm><info><mp><x><devcontrol><youtube><init_buffer>1.197<
<pm><info><mp><x><devcontrol><youtube><n_rebuf>0.000<
<pm><info><mp><x><devcontrol><youtube><rebuf_index>0.000<
<pm><info><mp><x><devcontrol><youtube><max_rebuf>0.000<
<pm><info><mp><x><devcontrol><youtube><mos>3.897<
<pm><info><mp><x><devcontrol><youtube><playback>7.194<
<pm><info><mp><x><devcontrol><youtube><total_rebuf_time>0.000<
<pm><info><mp><x><devcontrol><youtube><success>100.00<
<pm><info><mp><x><devcontrol><youtube><failed>0.00<
<pm><info><mp><x><devcontrol><youtube><total>1<

23.5.3 End of test Messages
Below are examples of "end of test" log messages.

StatsCalculationPhase
=====================
<pm><info><flow><x>KPIs computation starts
<pm><info><flow><x>KPIs computation time: 0 s<

<pm><info><general><end_time>2016-03-07 08h 32m 41s</end_time></general></info></pm> Test has ended

This indicates the process PerformanceTester.exe is about to finish.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 261/277

24 Annex 11: MEC User Manual

Our extension has the goal of integrating the MEC paradigm in the TRIANGLE testbed. We consider
MEC services composed of chains of Virtual Machines (VMs) potentially deployed in different Points of
Presence (PoPs). The communication and information exchanged among VMs of the same service chain
are provided by overlay networks, while a default public network provides the external connectivity to the
Internet. An additional public network, called SG net, can be used to attach the service chain to the
Serving Gateway (SGW) for interactions with the UE in the testbed.

For the realization of the interface allowing experimenters to create their MEC service chains, we have
used DevStack, a GitHub-based deployment of OpenStack that can run in a VM. The user interface is
provided by means of the Horizon dashboard.

24.1 Creation of a Service Template
The experimenters can create service templates by using the Horizon dashboard to define the service
chain and specify which components will be connected to the user personal network or, if needed, to
additional back-end networks. Additional options can be defined, which will be described in the following

step-by-step procedure.

24.1.1 Create an Image
To create a new image that will be made available for the creation of a service, go to the Horizon
dashboard, select Project, then Compute, Images, and click on Create Image.

Figure 138: Images management

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 262/277

Fill in the Image Name field, then click on Browse… to select the folder containing the image source file,
and specify the format. Finally, click on Create Image to complete the operation.

Figure 139: Images creation

24.1.2 Create the Personal and Back-end Networks
The experimenters can view and manage the network from the Network Topology tab, which initially
shows only the public network.

To add a new network, select Project, then Network, Network Topology, and click on Create Network.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 263/277

Figure 140: Network topology

In the Create Network dialog box, add Network Name and click on Next.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 264/277

Figure 141: Network topology

Add Subnet Name, Network Address and, if needed, Gateway IP. Click on Next.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 265/277

Figure 142: Network creation (I)

Additional attributes related to the subnets can be specified in the Subnet Details tab.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 266/277

Figure 143: Network creation (II)

24.1.3 Bind the Service Instances to the BNs
Once all the networks have been created, the experimenters can proceed with the addition of the virtual
machines that compose the service chain.

To add a service instance, select Project, then Network, Network Topology, and click on Launch Instance.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 267/277

Figure 144: Network topology

In the Launch Instance dialog box, click on the Details tab and insert the Instance Name.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 268/277

Figure 145: Instance configuration (I)

Click on the Source tab, select Image from the Select Boot Source drop-down menu, and then select an
item from Available items by clicking on the up arrow next to the name.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 269/277

Figure 146: Instance configuration (II)

Click on the Flavor tab and select an available flavor by clicking on the up arrow next to the name.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 270/277

Figure 147: Flavors

In the Networks tab, select the networks to be associated to the service instance and then click on Launch
Instance. This operation entails the actual deployment of the service in the TRIANGLE testbed, and its
orchestration is managed by means of the TAP plugin.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 271/277

Figure 148: Instance configuration

24.2 MEC Service Setup and Orchestration
The Keysight Test Automation Platform (TAP) is used in the TRIANGLE testbed for configuring and
running the test. We have designed a TAP plugin for our extension to start, stop, suspend and resume
individual VMs, along with providing the authentication management. Additional operations related to
migration could be added in the case of more than one server made available in the TRIANGLE testbed
for the MEC extension. As final operation, a script is provided to cleanup the system and make it available

for the following experiment.

24.2.1 Structure of the Plugin
In the config.xml file insert IP address, login and password of the OpenStack server you want to control.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 272/277

Figure 149: TAP plugin config file

In the TAP GUI, click on the + button to open the Test Steps menu.

Figure 150: TAP environment

Add steps by clicking on the corresponding Add button.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 273/277

Figure 151: OpenVolcano plugin

The image below is an example of a test composed of four steps: Start VM, Delay, Stop VM, Cleanup.

The Run button executes the whole list of active steps (the ones checked in blue).

Figure 152: TAP test plan example

24.2.2 Stop Service / “Stop Virtual Machine”
Since the operation of stopping a VM requires some time that depends on the nature of the VM, it is good
practice to add a delay after the Stop command to be sure VM is actually stopped. To do this, click on
the + button to open the Test Steps menu, select Delay, then click Add Child.

Add the Stop VM step, then go to Step Settings and choose to which VMs to apply the command.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 274/277

Figure 153: TAP plugin step (I)

24.2.3 Start Service / “Start Virtual Machine”
Add the Start VM step, then go to Step Settings and choose to which VMs to apply the command.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 275/277

Figure 154: TAP plugin step (II)

24.2.4 Suspend Service / “Suspend Virtual Machine”
Add the Suspend VM step, then go to Step Settings and choose to which VMs to apply the command.

Figure 155: TAP plugin step (III)

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 276/277

24.2.5 Resume Service / “Resume Virtual Machine”
Add the Resume VM step, then go to Step Settings and choose to which VMs to apply the command.

Figure 156: TAP plugin step (IV)

24.2.6 Clean Up testbed
Since the Clean Up step deletes the whole content of the project, before launching it make

sure to fill the resource_filter.xml file (xml format) with all the objects (e.g., networks,

servers, interfaces, etc.) that still need to be available for the following run. Such objects
include, at the very least the public and the SG net networks.

In resource_filter.xml, objects in the resource field are identified by their OpenStack ID as

indicated in the dashboard. The type field is actually not utilized but useful for a more

“user-friendly” identification of the objects.

Document: ICT-688712-TRIANGLE/D3.5

Date: 22/08/2019 Dissemination: PU

Status: Final Version: 1.2

TRIANGLE PU 277/277

Figure 157: TAP plugin step (V)

Figure 158: TAP plugin step (VI)

24.2.7 Available Files and Scripts

 config.xml: login, password and IP of the OpenStack server
 resources_filter.xml: script used to cleanup the DevStack user

 Tap.Plugins.OpenVolcano.dll: TAP plugin

