
Common concepts

This page contains concepts that may be shared between different implementations of the instrumentation library: purpose,

organization, message format, etc. There may be different implementations of the instrumentation library for different targets, e.g.

Android, iOS, Unity.

Instrumentation library contents

The instrumentation library will be used by app developers to provide measurement points from within their own apps. These

measurement points are necessary to compute some measurements. For instance, “playback started” and “playback finished” are

measurement points which are used to compute the “playback memory usage” measurement, and possibly others. Measurements in

turn can be used to compute KPIs or other aggregated data.

The measurement points are associated with a particular app feature. For instance, the two measurement points mentioned above

would belong to a “media file playback” feature. The features themselves belong to a particular app use case, which define the

general category of the app, such as “virtual reality"or “content distribution streaming services”. Some features don’t belong to any

particular use case and are associated with a “common” use case.

The package/class hierarchy of the instrumentation library should provide a clear path to the appropriate measuerement, so that the

user is able to navigate it to find the appropriate method/function to call. In addition, the relationship between a feature and its

measurement points is expected to be clear enough, so that there is no need to add measurements to the hierarchy of the library

(which have a many-to-many relationship with measurement points).

The general structure would then be:

App instrumentation library

Use cases

Features

Measurement points

Instrumentation messages

A call to one of the methods/functions of the instrumentation library will produce a message with all the relevant contents for that

measurement point . The way of getting the message from the mobile device to TAP depends on the actual library implementation.

The contents and format of the message do not.

Contents

The messages produced by the instrumentation library for any measurement point should have the following contents:

Timestamp: the time on the device when the message was produced

Measurement point: which measurement point is reported in the message. Each measurement point is reported in a single

message (although a single measurement point may have multiple values). A measurement point is identified together with the

use case and feature to which it belongs.

Value: the value (or values) of the measurement point, as given by the caller

Message format

The instrumentation library will produce messages in text format with a well-defined format. This format shall be flexible enough, so

that new messages can be produced without altering the format or breaking the existing parsers.

The general format of the text messages is as follows:

<timestamp>\t<use_case>\t<feature>\t<measurement_point>\t<value>

 

Note that \t denotes a tab character.

The variables used in the format are:

<timestamp>: the timestamp from the message

The timestamp should be in the UTC timezone

The timestamp is formatted using the following ISO 8601 representation: <date>T<time>, where

12/20/2017 1/2

https://en.wikipedia.org/wiki/ISO_8601


<date>=YYYY-MM-DD, with YYYY, MM, DD as zero-padded year, month and day, respectively

<time>=hh:mm:ss.sss<tz>, with hh, mm, ss, sss as zero-paded hour, minute, second, and millisecond, respectively.

<tz> is the timezone indicator, which can either be Z for UTC, or ±[hh] to indicate an offset in hours from UTC

<use_case>: the “canonical id” of the use case

<feature>: the “canonical id” of the feature

<measurement_point>: the “canonical id” of the measurement point

<value>: the actual value or values reported for the measurement point

The actual format of the value depends on the type used in the measurement point

The “canonical ids” of the use case, feature and measurement point must be composed exclusibely of alphanumeric characters and

the underscore, starting with a letter character i.e. "[a-zA-Z][a-zA-Z0-9_]*".

The message text is trimmed so that no extra spacing are located before or after the contents.

Value format

A measurement point may have zero or more arguments, which together form the value of the measurement point.

If a measurement point has more than one argument, the <value> contains a tab-separated list of each of the argument values.

There shall be no extra spaces around the commas. For instance: 1\ttrue\t2.0.

The format of each argument depends on its type. The following types are supported as arguments of a measurement point:

boolean

true and false values are formatted as true and false, respectively

int

integers are formatted using base 10

double

floating point values are formatted using an IEEE 754 compatible format

string

strings are placed between double quotes ("), e.g. "Hello, World!"

quotes inside strings must be escaped with \, e.g. "Hello, \"World\"!"

new-line characters should be escaped as well, as \n and \r, e.g. "line1\nline2"

Custom measurement points

The library will provide means to app developers to provide additional measurement points. These measurement points shall be

parsed and stored alongside the rest of the measurement points, but they will not be included as part of any standard measurement

computation.

To distinguish them from regular measurement points, all these measurement points will be organized into a new use case, called

“Custom”. It’s still expected that the message will contain a feature and measurement point, but their actual values and meaning are

left to the user.

Powered by TCPDF (www.tcpdf.org)

12/20/2017 2/2

https://en.wikipedia.org/wiki/IEEE_floating_point
http://www.tcpdf.org

