

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU i

Project: H2020-ICT-688712

Project Name:

5G Applications and Devices Benchmarking (TRIANGLE)

Deliverable D3.2

Report on the implementation of testing
framework Release 2 and specification of

testing framework Release 3

Date of delivery: 20/07/2018 Version: 1.1

Start date of Project: 01/01/2016 Duration: 36 months

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU ii

Deliverable D3.2
Report on the implementation of testing framework
Release 2 and specification of testing framework

Release 3

Project Number: ICT-688712

Project Name: 5G Applications and Devices Benchmarking

Project Acronym TRIANGLE

Document Number: ICT-688712-TRIANGLE/D3.1

Document Title: Progress report on the testing framework Release 2 and
specification of Release 3

Lead beneficiary: Universidad de Málaga

Editor(s): Universidad de Málaga

Authors: Keysight Technologies Belgium (Michael Dieudonne),
Keysight Technologies Denmark (Andrea Cattoni,
German Corrales Madueño, Marek Rohr), Universidad
de Malaga (Alberto Salmerón, Almudena Díaz, Pedro
Merino, Cesar A. García, Laura Panizo Jaime, Bruno
García, Guillermo Chica, Verónica Tapia, Maria del Mar
Gallardo), Redzinc Services Limited (Jeanne Caffrey,
Donal Morris, Ricardo Figueiredo, Terry O'Callaghan,
Pilar Rodríguez), DEKRA Testing and Certification S.A.U
(Carlos Cárdenas, Janie Baños, Oscar Castañeda, J.C.
Mora), Quamotion (Frederik Carlier, Bart Saint Germain),
TNO (Lucía D’Acunto, Piotr Zuraniewski, Niels van
Adrichem

Dissemination Level: PU

Contractual Date of Delivery: 30/09/2017

Work Package Leader: Universidad de Málaga

Status: Final

Version: 1.1

File Name: TRIANGLE_Deliverable_D3.2_V1.1_FINAL

Abstract

This deliverable provides the description of the second release of the TRIANGLE testbed. It
introduces current features provided by the TRIANGLE Portal and components integrated
into the testbed. The document also introduces the specification of the features for the next
release.

Keywords

Architecture, workflow, deployment, orchestration, test case, Portal, measurements tools,
RAN, EPC, SDN,EUs

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU iii

Document history

V1.0 Initial Release of the document

V1.1 Figure 2 has been updated in order to clarify that the Portal is only used for app
testing.

Section 9 has been updated with clarifications about how the user equipments need
to be connectorized to be integrated into the testbed.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU iv

Executive summary

This document is the second deliverable of WP3. WP3 is responsible for the development of
the testing framework in TRIANGLE. Testing framework covers all the software,
coordination/sequencing that control & connects to the test infrastructure. It is charge of
handling and converting the end user test requests into actionable steps within the software and
hardware portion of the testbed.

The document describes the second implementation of the TRIANGLE testbed and a complete
description of the features and the control interface implemented to manage each one of the
components of the testbed. The content of this document will be updated in D3.4, which will
introduce the advances in the architecture and the features provided by testbed to the date of
publication.

The focus of the document is to provide a clear understanding of how the testbed is being
implemented to deliver testing and certification services to app developers, device makers and
researchers. Release 2 of the testbed is focused on the improvement of the functionality offered
by the Portal, improvements in the orchestration, more sophisticated network scenarios, and a
more efficient integration of the tools and the addition of new features. The document also
includes the results of a test executed to check the integration of the current components.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU v

Contents

1 Introduction .. 1

2 TRIANGLE testbed architecture ... 3

2.1 TRIANGLE testbed workflow and architecture overview .. 3

3 Interface and visualization (Portal) ... 5

3.1 Information provided by users ... 5

3.2 Backend REST API ... 7

4 Orchestration.. 8

4.1 Orcomposutor ... 8

4.2 Test Automation platform (TAP) .. 9

4.3 New features in the Quamotion WebDriver ... 14

5 Measurements and data collection ... 17

5.1 KPIs computation .. 17

5.2 Metrics and mark computation .. 17

5.3 Instrumentation library ... 17

6 RAN (Radio Access Network) .. 19

7 EPC ... 20

7.1 EPC Architecture ... 20

7.2 EPC Triggered Procedures ... 20

8 Transport .. 22

9 UE (User Equipment and accessories) ... 24

9.1 Supported UEs .. 24

10 Local applications and servers ... 26

10.1 DANE (DASH-Aware Network Element) .. 26

11 Extensions and new features ... 29

11.1 GPS emulation .. 29

11.2 VR Applications Testing .. 33

11.3 Model Based Testing .. 42

11.4 Traffic Impairments ... 47

11.5 Remote PCAP Capabilities ... 48

12 Internal test experiment .. 49

12.1 Testbed setup ... 49

12.2 Test Configuration ... 49

12.3 Initial Measurements ... 50

13 TRIANGLE testbed Release 3 specifications ... 52

13.1 Interface and visualization (Portal) .. 52

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU vi

13.2 Orchestration .. 52

13.3 Measurement and data collection .. 53

13.4 User equipment and accessories .. 53

13.5 Extensions and new features .. 53

14 References ... 54

15 Appendix 1: Portal API REST ... 55

15.1 Devices ... 55

15.2 Users .. 55

15.3 Apps .. 56

15.4 Features .. 57

15.5 Test cases ... 58

15.6 Scenarios .. 60

15.7 Campaigns .. 60

16 Appendix 2: TAP plugins. Implementation details. .. 61

16.1 Quamotion WebDriver TAP plugin... 61

16.2 OML TAP plugin .. 67

16.3 App instrumentation TAP plugin .. 70

16.4 Android TAP plugin ... 71

16.5 iOS TAP plugin ... 75

16.6 Impairments TAP plugin .. 78

16.7 RF Switch TAP plugin ... 79

16.8 GPS emulation TAP plugin .. 81

16.9 Dynamic Sequence plugin ... 84

16.10 Iteration-aware result listener plugin .. 85

16.11 KPIs calculation plugin .. 85

16.12 Plugins to reach TAP server .. 85

16.13 DEKRA TAP plugin ... 86

16.14 VELOX plugin ... 90

17 Appendix 3: Android Instrumentation Library Usage ... 93

17.1 Including in an Android project .. 93

17.2 Usage ... 94

17.3 Example .. 94

17.4 Using the Android Instrumentation Library from Unity ... 95

17.5 Retrieving messages ... 96

17.6 Measurements format ... 97

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU vii

List of Figures

Figure 1 High-Level architecture of the testbed ... 1

Figure 2 Testbed workflow .. 3

Figure 3 Control and management entities of the testbed ... 4

Figure 4 Uses cases .. 5

Figure 5 Features selection and measurements points ... 6

Figure 6 External Parameter setting & command line execution .. 10

Figure 7 Test plan flow chart & TAP implementation ... 11

Figure 8 Hardware and software components of the testbed for Release 2 12

Figure 9: Quamotion WebDriver script editor ... 14

Figure 10 EPC architecture ... 20

Figure 11: MANO deployment architecture .. 22

Figure 12 User equipment connectorization .. 24

Figure 13 iPhone 7 plus .. 25

Figure 14 Samsung Galaxy S7 .. 25

Figure 15 Contact antenna .. 26

Figure 16 SAND architecture within the TRIANGLE testbed, including DANE, DASH streaming
server and DASH VR app.. 27

Figure 17 Setting the DANE’s bandwidth within a TAP’s test scenario 28

Figure 18 Connecting USRP output to the UE GPS antenna ... 30

Figure 19 Google Maps route and XML file ... 33

Figure 20 VR test module architecture .. 35

Figure 21 OpenCV system reference .. 38

Figure 22 VR test solution validation ... 40

Figure 23 VR validation ... 40

Figure 24 Universal Music Player model ... 43

Figure 25 Universal Music Player GUI ... 44

Figure 26 Extract of Promela specification for test case generation 45

Figure 27 Pruning never claim as automaton .. 46

Figure 28 - CDF of the CPU usage [%] for YouTube API and ExoPlayer 50

Figure 29 - CDF of the consumed Power [W] for YouTube and ExoPlayer 50

Figure 30 - Cumulative data received by YouTube and ExoPlayer .. 51

Figure 31 Main classes of TAP plugin for iOS .. 78

Figure 32 URSP instrument ... 83

Figure 33 PrepareEmulation step .. 83

Figure 34 StartEmulation step ... 83

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU viii

Figure 35 Dynamic Sequence to enable master & slave sequences 85

Figure 36 DEKRA Tool TAP Instrument .. 87

Figure 37 DEKRA Tool TAP DUT .. 88

Figure 38 DEKRA Tool TAP Test Step (YouTube test) .. 89

Figure 39 DEKRA Tool TAP Run/Stop Test .. 89

Figure 40 - Expected VELOX Step Order .. 92

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU ix

List of Tables

Table 1 - Orcomposutor REST API ... 9

Table 2 – TAP plugins implemented in the Release 2 ... 12

Table 3 – Commands provided by the Quamotion Webdriver script editor 15

Table 4: EPC Elements loopback IPs and not depicted interfaces ... 20

Table 5: OPNFV FUEL installer details .. 22

Table 6 Current status of devices integrated into the testbed .. 26

Table 7 – VR Application User Experience Key Performance Indicators 34

Table 8 – Robotic arm position range and reference ... 35

Table 9 – Robotic arm reference values .. 37

Table 10 – Validation results for determining matching threshold .. 41

Table 11 – AUE/VR/001 Validation results .. 41

Table 12 App user flow generation - Experiments ... 47

Table 13 Quamotion WebDriver instrument settings .. 61

Table 14 Quamotion WebDriver instrument methods .. 61

Table 15 Quamotion WebDriver New session step settings .. 62

Table 16 Quamotion WebDriver Close session step settings .. 63

Table 17 Quamotion WebDriver User action steps settings ... 63

Table 18 Quamotion WebDriver Enter text step settings ... 64

Table 19 Quamotion WebDriver Query step settings ... 64

Table 20 Quamotion WebDriver Query step results... 66

Table 21 Quamotion WebDriver Replay step settings ... 66

Table 22 OMLServerInstrument settings .. 67

Table 23 OMLServerInstrument public properties .. 67

Table 24 OMLServerInstrument methods ... 67

Table 25 ICsInstruments public properties .. 68

Table 26 OML TAP plugin Configure OML step settings ... 68

Table 27 OML TAP plugin Send CSV step settings ... 69

Table 28 OML result listener settings .. 70

Table 29 Settings for the Parse Measurements step ... 70

Table 30 Settings for the Parse Regex in Logcat step ... 71

Table 31 Android TAP plugin instruments ... 71

Table 32 Settings shared by the Android steps ... 72

Table 33 Settings for the Custom command on the Adb Command step 72

Table 34 Settings for the Custom command on the Adb Command step 72

Table 35 Settings for the Custom command on the Adb command step 73

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU x

Table 36 Settings for the Custom command on the Adb Command step 73

Table 37 Settings for the Start, StartService and Broadcast commands on Activity Manager 73

Table 38 Settings for the Force Stop command on Activity Manager 74

Table 39 Settings for Adb Airplane Mode step ... 74

Table 40 Settings for the Logcat step .. 74

Table 41 Settings for the Retrieve Background Logcat step .. 75

Table 42 - iOS TAP plugin instrument ... 76

Table 43 - iOS TAP plugin test steps ... 76

Table 44 Settings for the Set Link Impairments step .. 78

Table 45 Settings for the Reset Impairments step ... 79

Table 46 Settings for the Retrieve Background Logcat step .. 80

Table 47 Settings for the Open Path step .. 80

Table 48 Settings for the Connector switching step ... 80

Table 49 – GPS API Rest .. 82

Table 50 – DEKRA Tool RC Server channel ... 86

Table 51 – DEKRA Tool TAP Instrument ... 86

Table 52 – DEKRA Tool TAP DUT .. 87

Table 53 – DEKRA Tool TAP Test Steps .. 88

Table 54 – DEKRA Tool RC Server Get Results ... 89

Table 55 - VELOX TAP Steps ... 91

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU xi

List of Abbreviations

AUT App Under Test

AP Access Point

APNet Antennas, Propagation and Radio
Networking

BER Bit Error Rate

BLER Block Error Rate

BS Base Station

CAPEX CApital EXpenditure

CDMA Code Division Multiple Access

CFO Carrier Frequency Offset

CO Confidential

CP Cyclic Prefix

CR Cognitive Radio

CRS Cognitive Radio Systems

CSI Channel State Information

CSMA Carrier Sense Multiple Access

C2X Car-to-Anything

D Deliverables

DL Downlink

D2D Device-to-Device

DMRS Demodulation reference signal

DRX Discontinuous Reception

DTX Discontinuous Transmission

DUT Device Under Test

EIRP Effective Isotropic Radiated
Power

EIT European Institute for Innovation
and Technology

E2E End-to-End

EVM Error Vector Magnitude

FDD Frequency Division Duplex

FD-MIMO Full-Dimension MIMO

FEC Forward Error Correction

FR Frequency Response

GPRS General Packet Radio Service

GSM Global System for Mobile
communications

HARQ Hybrid Automatic Repeat Request

ICI Inter-Carrier Interference

ICT Information and Communications
Technology

IEEE Institute of Electrical and
Electronics Engineers

IMT International Mobile
Communications

IP Intellectual Property

IPR Intellectual Property Rights

IR Internal report

ITU International Telecommunication
Union

ITU-R International Telecommunication
Union-Radio

KPI Key Performance Indicator

LAN Local Area Network

LOS Line of Sight

LTE Long Term Evolution

LTE-A Long Term Evolution-Advanced

L2S Link to System

M Milestones

Mbps megabits per second

Mo Month

MA Multiple Access

MAC Medium-access Control

MGT Management

MIMO Multiple-Input Multiple-Output

MMC Massive Machine Communication

M2M Machine to Machine

MSE Mean Squared Error

NLOS Non line of Sight

OFDM Orthogonal Frequency Division
Multiplexing

OPEX Operational Expenditure

PA Power Amplifier

PAPR Peak-to-Average-Power-Ratio

PC Project Coordinator

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU xii

PHY Physical Layer

PU Public

QAM Quadrature Amplitude Modulation

QAP Quality Assurance Plan

QMR Quarterly Management reports

QoE quality of experience

QoS Quality of Service

RACH Random Access Channel

RAN Radio Access Network

RAT Radio Access Technology

RF Radio Frequency

R&D Research and Development

RRM Radio Resource Management

RTD Research and Technological
Development

RTT Round Trip Time

SDR Software Defined Radio

SINR Signal to Interference and Noise
Ratio

SRS Sounding Reference Signal

T Task

TDD Time Division Duplex

TDMA Time Division Multiple Access

TRX Transmitter

TTI Transmission Time Interval

UE User Equipment

UL Uplink

UMTS Universal Mobile
Telecommunications System

USRP Universal Software Radio
Peripheral

V2V Vehicle-to-Vehicle

V2X Vehicle-to-anything

WCDMA Wide Code Division Multiple
Access

WLAN Wireless Local Area Network

WP Work Package

WPAN Wireless Personal Area Networks

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 1/97

1 Introduction

D3.1 described in detail all the instruments, tools and hardware composing the testbed and the
outcome of the first integration of some of these components. For the configuration, control and
coordination of the components an orchestration framework, based on TAP, was defined. The
general architecture of the testbed (shown in Figure 1) the orchestration of the framework and
the components of the testbed were all documented in D3.1.

Figure 1 High-Level architecture of the testbed

In D3.2, we will follow this high-level architecture to introduce the innovations and improvements
introduced in each of their components. The document starts with Section 2 which provides a
quick overview of the general workflow of the testbed so that the reader can better understand
the internal functioning of the system.

Section 3 introduces the improvements carried out in the Portal. The Portal is the main entry
point to the testbed for application developers. In the initial version of the testbed a very limited
set of functionalities was exposed through the Portal. In this version of the testbed (Release 2),
and once the applications are uploaded, developers can declare a set of features about their
applications. In accordance with these features the Portal offers the code snippets the developer
should introduce into the code of their applications to measure the KPIs associated to the
declared features. In this sense, the Portal offers a common approach to measure the QoE of
applications offering the same or similar features. Custom KPI can also be defined using the
instrumentation library (see Section 5).

The key components of the orchestration framework are explained in section 4. As already
introduced in D3.1, each elements that needs to be configured and controlled as part of the
testbed has an associated TAP driver. Section 4 explains all the drivers developed so far. These
drivers provide the configuration and control steps used to compose the TAP test plan templates
used to execute the test campaigns defined in the Portal. Moreover, researchers and device
markers can use these drivers directly to define their own customized TAP test plans. The
TRIANGLE testbed offers to device markers and researchers a virtual machine hosted in the

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 2/97

testbed. Through the TAP environment installed in these virtual machines the experimenters
have a secure and flexible access to all the components of the testbed.

Section 5 introduces advances to support the collection of measurements which enable the
computation of QoE metrics. The first release of the testbed (Release 1) offered isolated
measurements of CPU, RAM, traffic, power consumption, etc. In this release (Release 2) we
have implemented a first version of the instrumentation library defined in D3.1. This library
enables to link all the measurements collected by the testbed with the features exercised at any
time by the application, for example it is able to measure the power consumption while playing
a video. Moreover, this library enables to measure internal delays of the application when using
these features, being delays a key factor when computing QoE. A more the detailed description
of the ETL module which computes the KPIs and the TRIANGLE mark will be provided in D3.3.

Sections 6, 7, 8, 9 and 10 describe the novelties introduced in each one of the segments of the
testbed: Radio access, EPC, Transport, UE and Servers, respectively. Section 11 describes
new features introduced in the testbed, like GPS emulation, model based testing and the robotic
arm for Virtual reality applications. Section 12 provides the results obtained after running
internally experiments to exercise the testbed and probe its ability to characterize the
performance of mobile apps. Finally, Section 13 enumerates the features that the project will
introduce in Release 3.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 3/97

2 TRIANGLE testbed architecture

In this section we will provide a quick overview of the testbed workflow which will enable the
reader to understand the architecture of the testbed and the role of each one of the components

2.1 TRIANGLE testbed workflow and architecture overview

End users, of the type Application developers, use the TRIANGLE portal to upload their apps
and then define the test campaigns. The Portal provides a set of forms where the users declare
the features of their Apps (implementation statements), and any required additional information
(such as the app user flow which contain a sequence of actions to stimulate the app during the
test) to carry out the tests. The Portal is described in more detail in Section 3.

To configure and execute a test the orchestrator (implemented in Python as shown in Figure 3),
will make use of the information provided by the end user at the Portal. The information is
retrieved by the Orchestrator using the REST API provided by the Portal and described in
Appendix 1.

With this information the Orchestrator instantiate the Compositor to compose a TAP test plan
that includes the network scenario setup, the app installer, the app user flow and the
measurements that have to be gathered to compute a given set of KPIs. The KPIs depends on
the features declared by the App. The TAP test plan is built from existing TAP templates and
TAP scenarios as shown in Figure 3.

Figure 2 Testbed workflow

In the next step of the testbed workflow the Executor is instantiated to execute this TAP test
plan with TAP. The TAP test plan configures all equipment needed to run the tests (such as the
UXM), executes the body of the test, and gathers results produced by any of the measurement
probes and tools. The results are stored in a database.

Finally the Orchestrator instantiates the ETL module (Extract, Transform and Load) to compute
the KPIs from these measurements. The computed results will be stored in a separate database.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 4/97

For certification, a set of metrics will be derived out of the computed KPIs. To rate the product
using the TRIANGLE mark, the metrics will be compared against a set of reference values.
These metrics will be stored in a separate database.

Finally, the results will be presented to the end user in the Portal.

This workflow translates into the components shown in Figure 3. For the sake of clarity in Figure
3 only shows control and management entities. Software and hardware components of the
testbed are shown in Figure 8.

During the implementation the Orchestrator, the Compositor and the Executor has been
implemented as part of the same component, called the Orcomposutor. The Orcomposutor also
provides a REST API which is used by the Portal to order the execution of a test campaign
defined by the user in the Portal. The Orcomposutor is described in more detail in Section 4.

Figure 3 Control and management entities of the testbed

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 5/97

3 Interface and visualization (Portal)

Portal is the main entry point of the TRIANGLE testbed for app developers. In this Portal, among
other things, end users can upload new apps. In addition, end users will have to declare the
uses cases and their apps (see Figure 4). Each use case has associated a set of features as
shown in Figure 5. These features will define what can be tested through experiments, or which
tests specifications will be applicable when they opt for certification (certification will be available
in Release 3).

Figure 4 Uses cases

Users can then define their own experimentation campaigns to test certain features of their app.
For these campaigns, users have some high-level options they can configure: the scenario of
the test, the device on which the test will be carried out, and a subset of the applicable KPIs.
The Portal also provides a code snippet that should be used by the developer inside his app to
measure the KPIs associated to the features declared.

3.1 Information provided by users

App developers provides information about their apps through the Portal. In addition, when
creating an experimentation campaign, or going for certification, they may be asked for
additional information.

Since the information provided for apps is of considerable size, users will be able to enter it at
their own pace, using the forms available in the Portal.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 6/97

Figure 5 Features selection and measurements points

3.1.1 App info

The following is provided for each app:

• App file, e.g. APK file for Android apps. Some metadata can be extracted from this

file, such as the app name, version, and codename.

• Features applicable to the app. The app developer will select from a list of uses

cases and its associated features, which ones apply to his or her app. The list of

features will be extracted from D2.2, so that a clear mapping between them and the

test specifications/ICS table can be done.

• How to measure. Each feature will be tested according to a set of KPIs. In order to

test many of the features, and to get the appropriate measurements to compute the

KPIs, app developers will have to provide additional information.

o App user flows. A sequence of user actions that can be executed

automatically to test that feature. When possible, the app user flows will be

asked once per feature, so that users do not have to enter separately for each

KPI, or in groups. For instance, if there is a “post photo” feature on which

several KPIs can be measured, they will only be asked for a single app user

flow.

o Measurement points. In order to compute some KPIs, the app developer must

define how some of the required measurements can be obtained in his or her

app. Depending on the KPI, the user will be able to provide these measurement

points in several ways. For instance, as a particular user action within the app

user flow, or a measurement point set using an instrumentation library.

Since apps may evolve over time, and their features, or how to measure some of the KPIs, can
change over time, the developer will be able to customize this information for each app version.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 7/97

3.1.2 App experimentation

When the user wants to carry out an experimentation campaign, he or she must select the
following information:

• App and version. The user may have more than one app, and more than one version

of that app. Therefore, he or she must select the one that will be tested.

• Scenario. One of the high-level scenarios defined in the TRIANGLE project, which

hides the complexity of the parameters that must be configured in the Testbed

equipment.

• Device. One of the devices available in the Testbed, on which the app will be tested.

• Features/KPIs (optional). A subset of all the features/KPIs applicable to the app, if the

developer is interested only in testing part of the app.

3.2 Backend REST API

The Portal now includes a REST API that provides access to its backend. This API allows
external services to request information stored in the backend database, or update it. Outside
of the Portal, the primary user of this REST API is Orcomposutor (described in Section 4.1),
which uses the API to fetch the details of campaigns to be executed, and to upload the results
once they are finished.

All API calls return a JSON object with data about the requested resource. The REST API largely
adheres to the HATEOAS (Hypermedia as the Engine of Application State) principle. In practice
this means that JSON responses include URLs that point to other related resources. For
instance, when querying a single application, the JSON response includes a list of its versions
with some information such as their Id and version code, as well as a URL to the resource of
that application version, in order to request more details.

The REST API provides access to the following resources:

- Devices

- Users

- Apps and their versions

- Features

- Test cases

- Scenarios

- Campaigns

Methods available to access to these resources are detailed in Appendix I.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 8/97

4 Orchestration

Once all the required information has been entered into the Portal, the TRIANGLE testbed end
user can proceed with an experiment. The first step would be to take the information entered
and turn it into executable TAP test plans. This is the task of the test plan Orcomposutor.
According to the features introduced in the Portal for the product under test, the Orcompusutor
will generate the applicable test plans.

To create the required TAP test plans, the Orcomposutor uses pre-defined TAP test plan
templates. When possible, the Orcomposutor will take advantage of two TAP features: the ability
to expose parameters of a test step to external callers, and a test step that allows the execution
of another test plan.

For instance, may test plans will start by setting up the network scenario, and configuring the
required parameters in the Testbed equipment. This setup will be the same, regardless of the
body of the test plan. Thus, the Orcomposutor will reuse existing TAP test plans that configure
particular network scenarios.

For an app test, the body of the test plan typically includes replaying the user actions contained
in an app user flow provided by the app developer. The Orcomposutor will get the app user flow
from the Portal, and will set the corresponding external parameter of the WebDriver replay test
step.

The Orcomposutor is also aware of which KPIs are going to be measured with each of the
generated TAP test plans. If necessary, the test plan should provide explicit support for
performing the measurements required for the KPIs. For instance, if a test plan will contribute
to a KPI on power consumption, the power analyser must be configured and used in the test
plan. In addition, the information on which KPIs are going to be measured by each test plan
must be passed along in the workflow.

Each of the TAP test plans created by the Orcomposutor can be then executed in the Testbed
using TAP. The TAP test plan contains all the information required to execute a test
automatically.

During the execution of the TAP test plan, the measurement tools will gather measurements.
The measurement tools that are fully integrated with TAP will publish them as usual. In this
case, the results will be handled by a TAP result listener that sends them to a central OML
server. This OML server uses a PostgreSQL database server to store the measurements. Some
tools may include OML support, and thus send their measurements directly to the OML server
directly.

4.1 Orcomposutor

Orcomposutor (ORchestrator-COMPOSer-execUTOR) is a server with a REST API that runs
on the same Windows machine as TAP. Its purpose is to bridge the Portal and TAP (which run
on separate machines) by:

• Accepting test campaign execution requests from the Portal

• Composing the TAP test plans required to run a test campaign and its test cases

• Executing the TAP test plans

• Uploading the results of the execution to the Portal

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 9/97

To carry out these functions, Orcomposutor needs to communicate with the REST API of the
Portal backend (described in Section 3.2), and with the OML database.

4.1.1 REST API

Orcomposutor has a REST API that exposes a single method.

Table 1 - Orcomposutor REST API

URL Method Description

/run_campaign?id=<id> GET

Handles requests to execute a campaign.

Returns immediately. Backend will be updated with
campaign progress and results.

This method returns immediately, informing the caller that the campaign was started
successfully. If there is another test campaign being executed on the testbed at the moment,
Orcomposutor will return an error code. The backend will be updated periodically with the
progress of the test campaign execution, and any results that are produced after executing each
test case.

4.1.2 TAP test plan composition and execution

The request to execute a test campaign only includes the identifier of that campaign.
Orcomposutor uses that id to request more information about the test campaign to the backend
using its REST API. This information is used to determine which test case or test cases must
be executed with TAP. Since a single test campaign can define more than one test case, it is
possible that Orcomposutor must prepare the execution of more than one TAP test plan.

TAP test plans contain several external parameters and test plan references that must be filled
in to be executed. Orcomposutor must retrieve the appropriate information from the backend
REST API in order to fill in this blanks, such as the id of the device used in the test case, or the
network scenario. In the latter, Orcomposutor must select the appropriate TAP test plans that
include the initialization and dynamic configuration for each scenario. We call the selection of
this parameters and referenced TAP test plans the composition of the test plan.

Once the TAP test plan has been composed, it can be executed with the TAP CLI.
Orcomposutor will store the TAP logs, as well as internal logs for diagnostic purposes.

4.1.3 Results

Once a TAP test plan has finished correctly, Orcomposutor will upload the corresponding results
to the Portal backend. These results include:

- Results collected in the TAP database from testbed instruments and tools (including the
instrumentation library)

- Logs from the device (e.g. logcat for Android devices)

- Traffic capture in pcap format

4.2 Test Automation platform (TAP)

4.2.1 New features in TAP)

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 10/97

The TAP automation software introduces three new major features into the TRIANGE testbed
Release 2:

- The compatibility of Test Plan Reference test step with External Parameter

- TAP server

- Move from .NET to .NET Core

4.2.2 Test Plan Reference called as External Parameter

In TAP terminology, a Test Plan Reference test step is a special test step which allows TAP to
call any 3rd party test plan to be executed in a sequence as a single test step. Despite the
potential complexity of the called test plan, this is transparent to the original test plan. The parent
TAP test plan cannot modify fields within the called test plan, guaranteeing no interference
between master test plan and called test plan when using the test plan reference test step.

TAP additionally allows some fields within the test steps to be declared as External Parameters.
These fields have a default value, but when launching TAP from a command line interface, can
have their value replaced by the command line requested value, further increasing the flexibility
of a single test plan. Indeed, the user can reuse a single TAP test plan with a large combination
of parameter values, simply by declaring them as external and crafting command line calls with
different values.

Figure 6 External Parameter setting & command line execution

On Figure 6 shows an example of a TAP test plan is created with a Delay step, using a Time
Delay parameter called “DelayStepA” set to a default value of 5 seconds. At execution, the
external parameter is forced to 7 seconds and the delay step executes for roughly 7 seconds.

The new TAP release (TAP 2018 or simply TAP 8) combines the two above-mentioned features
to bring increased flexibility in the creation of dynamic test plans, by enabling Test Plan
Reference test steps to be called as external parameters. This means that whole subsections
of TAP test plans can be replaced at each test execution, by pointing the external parameter’s
value to another 3rd party test plan.

4.2.3 TAP server

TAP offers the new feature to run as a server, listening to remote connections received via TCP
or through REST API, to execute test cases at will. This enables a lab PC running TAP to receive

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 11/97

asynchronous test requests from web interfaces, without exhibiting the access to the lab to the
experimenter.

4.2.4 .NET Core

TAP moved from .NET to .NET Core to increase its compatibility with more platforms and be
more flexible in its deployment.

4.2.5 TAP test plan templates

TAP test plans to be executed on the TRIANGLE testbed will be created from generic templates,
and programmatically parameterized by the Orcomposutor according to the domain, use case,
test case and network scenario the user wants to test in.

The skeleton of a template consists of the following example steps:

- Instruments initialization & set-up according to domain, test case and network scenario,
for instance (highlighted in green on Figure 7)

o UE initialization with the installation of the application under test

o Power analyser set up to measure device power consumption

o UXM configuration for a specific network scenario

- A repeat loop, which will run successive iterations of the same application flows, to
gather multiple measurements to reach meaningful and converged test results. (In
orange on Figure 7)

During this loop:

o Parameters representing network and channel conditions will evolve
dynamically, within a single network scenario, to represent the variability of
connectivity conditions for the end user in the field (purple on Figure 7)

o The application flow will be executed, delivered by the application developer
(blue on Figure 7)

Figure 7 Test plan flow chart & TAP implementation

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 12/97

The different sections will take advantage of the “Test Plan Reference being an External
Parameter” TAP feature introduced in 4.2.1, replacing the application test flow depending on
the test case, substituting the network scenario depending on the emulated channel conditions
the experimenter requests and so on.

4.2.6 TAP plugins

This section introduced the TAP plugins implemented to configure and control the different
components of the TRIANGLE testbed. Figure 8 shown the hardware and software components
of the testbed and the drivers associated to each one of them.

Figure 8 Hardware and software components of the testbed for Release 2

Table 2 provides a brief description of each one of the TAP plugins implemented. All the
implementations details of these TAP plugins are provided in Appendix 2.

Table 2 – TAP plugins implemented in the Release 2

TAP plugin Description

Quamotion WebDriver This plugin allows TAP to send user actions (such as
tapping a button or entering a text in a field) through the
use of Quamotion WebDriver. The plugin will provide an
instrument to connect to the Quamotion WebDriver, as
well a series of test steps.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 13/97

OML server This plugin allows TAP to send the results reported during
an experiment to an OML server (which will store them in
a database).

Instrumentation library This plugin allows TAP to parse logs from devices to
extract measurements produced by the instrumentation
library. These measurements will be published and
processed by the corresponding result listeners. This
plugin does not provide any additional instruments.

Android This plugin provides a collection of steps that can be used
for controlling an Android device connected to the
TRIANGLE testbed through the Android Device Bridge.

iOS This plugin allows TAP to control an iOS device in order to
perform key actions, such as restart, save logs, capture
network traffic and launch apps. An iOS device can be an
iPhone, iPad or iPod Touch.

RF switch This plugin provides steps and an additional instrument for
controlling a LXI-compliant 11713C attenuator/switch
driver available on the TRIANGLE testbed. This switch
driver is used alongside Keysight L7104A electro-
mechanical switches, in order to allow the users to select
one of the available devices in the testbed at any given
time.

GPS emulation This plugin provides the instruments and the steps to
configure and control the GPS emulation feature
introduced in Section 11.

Dynamic Sequence Plugin In order to efficiently enable the parallel test execution
structure described in 4.2.5, a new plugin needs to be
introduced, called DynamicSequence, has been
introduced.

Iteration-aware result listener
plugin

A test case requires to be run multiple times to reach
statistically meaningful and converged test results.
Results from each iteration need to be saved separately
to calculate KPIs, and pinpoint possible sporadic
performance outliers. To achieve iteration-aware tagging
of test results, a new Result Listener has been added to
TAP, injecting the application flow iteration into the test
results.

KPIs calculation plugin The plugin is aware of the domain, use case and test case
of the results it receives as input, and calculates the
relevant KPIs for this combination.

Plugins to reach TAP server This plugin enables to reach remotely a TAP server which
implies that the Orcomposutor can reach a TAP server
installed in a different machine to run the composed TAP
test plans.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 14/97

DEKRA This plugin enables to control the DEKRA Performance
Tool from TAP to collect UE measurements during the
executions of the TAP test cases.

VELOX This plugin enables to use from TAP the RedZinc VPS
Engine or Velox, an over-the-top-content enabler.

4.3 New features in the Quamotion WebDriver

The following new features are added to the Quamotion WebDriver in the second release of the
TRIANGLE Testbed

• Application flow editor

• Full device automation

• Verification of user interface properties

• Remote control on Android and iOS

• Record application flows (Click, enter text, back)

• Hybrid and browser application support

• Support for iOS 11 and Android 8 versions

4.3.1 Application flow editor

The Quamotion WebDriver allows to create, record and edit an application flow for both Android
as well as iOS applications (see Figure 9: Quamotion WebDriver script editor). There is no need
to write code for basic scenarios.

Figure 9: Quamotion WebDriver script editor

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 15/97

The script editor provides templates for the most common commands such as those described
in Table 3 – Table 3.

Table 3 – Commands provided by the Quamotion Webdriver script editor

Command Description Properties

New session Create a new session

Remove session Remove the current session

Click element Click on an element with the given
xPath

xPath

Send keys Send keys to the keystroke Text

Dismiss keyboard Dismiss the keyboard

Clear text Clear the text of the active text field

Enter text Enter text performs:

1. Click element

2. Clear text

3. Send keys

4. Dismiss keyboard

xPath

Text

Go back Press back button

Implicit wait Set the maximum allowed time to
wait for an element

Time (milliseconds)

Explicit wait Wait for the given time Time (milliseconds)

Test element Test whether an element with the
given xPath exits

xPath

Test property value Validate a property of an element xPath

Property name

Expected property value

Get property Get the value of a property xPath

Property name

Set property Set the value of a property xPath

Property name

Property value

Get element Get the first element corresponding
to the given xPath

xPath

Get elements Get all elements corresponding to
the given xPaht

xPath

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 16/97

The application flow can be exported to a script language of choice or can be exported in a
JSON format which is supported by the TRIANGLE portal.

4.3.2 Full device automation

The Quamotion WebDriver allows to automate parts of the user interface outside the sandbox
of an application. This allows to automate e.g. system notifications, applications pulled from the
app store (iOS), etc.
The Quamotion WebDriver API, clients and frontend can be used in the same way as for app
automation.

4.3.3 Verification of user interface properties

Properties of user interface elements can be retrieved and verified. This gives tangible feedback
on whether the application flow did succeed in a test campaign. The validation results can be
queried in the dashboard or can be queried through the provided APIs.

4.3.4 Remote control on Android and iOS

The Quamotion WebDriver provides VNC functionality for Android and iOS devices. It is now
possible to interact with a connected mobile device from the browser.

4.3.5 Record application flows (Click, enter text, back)

Application flows can be generated by interacting with a mobile device. Clicks, enter text and
back actions are intercepted and generate the appropriate command in the Application flow
editor.

The recorded script can be edited during and after recording.

4.3.6 Hybrid and browser application support

Quamotion improved the support for hybrid and browser applications. The most common
gestures like click, enter text, swipe, scroll-to are now available for web.

4.3.7 Support for iOS 11 and Android 8 versions

The Quamotion WebDriver supports the latest versions of Android and iOS. Users can still
choose their preferred operating system (Linux, Mac and Windows) to install and use the
Quamotion WebDriver e.g. there is no need for a Mac computer to automate an iOS device.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 17/97

5 Measurements and data collection

5.1 KPIs computation

The measurements stored in the OML database serve as the source material for extracting and
computing the KPI values. A specialized ETL (Extract, Transform, Load) will perform this task.

Each test is executed to measure enough data to compute a set of KPIs. Therefore, the ETL
tool needs as input which of the KPIs defined for the TRIANGLE Testing Framework can be
computed from the experiment or test. This information was produced by the Orcomposutor,
along with each of the test plans it generated.

The computed KPIs are stored in a database different from the OML database.

For experimentation campaigns, the main body of the workflow ends here. The computed KPIs
will be available for the user in the Portal, along with the raw measurements.

5.2 Metrics and mark computation

For each campaign, a number of metrics need to be computed. The input for this process are
the computed KPI values from the previous step. The computation of the metrics and marks is
part of the ETL module which will be described in detail in D3.3.

5.3 Instrumentation library

The Application Instrumentation Library (Instrumentation Library or just Library for short) is a
library provided by the TRIANGLE project to app developers, in order to extract measurements
from inside their applications. The measurements performed through the Instrumentation
Library will be stored along other measurements gathered during a test case execution. This
Library provides the necessary measurement points for running the test specifications defined
within the TRIANGLE project, and computing the corresponding KPIs and metrics. In addition,
the Library allows app developers to log additional measurements outside of the ones defined
within the project, and store them with the rest of the measurements. The measurements that
app developers will be able to get from the Portal will include both “custom” and “standard”
measurements. At the moment, this library is available only for Android applications. The same
library can also be used in Unity applications for Android. Some parts are written in a generic
manner, to be applicable to other future library implementations. This section describes the
Library contents, and how to use it inside an application. It also describes the current internal
format of the messages produced by the Library, although this information is internal and subject
to change.

5.3.1 Library contents

The instrumentation library will be used by app developers to provide measurement from within
their own apps. These measurements are necessary to compute KPIs. The KPIs themselves
belong to a particular app feature, e.g. “login” or “post picture”. The measurements also belong
to these features, and can be used in one or more KPIs for that feature. Finally, the features are
grouped by the use case to which they belong, e.g. “live streaming services” or “social
networking”. Each measurement may have zero or more arguments that must be filled in by the
user. These arguments can be of any of the four following types:

• Boolean

• Integer

• Floating point

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 18/97

• String

5.3.2 Standard measurements

As part of the TRIANGLE project, a set of “standard” measurements have been defined. These
measurements are used to compute the KPIs defined for the TRIANGLE test cases. The
package/class hierarchy of the instrumentation library provides a clear path to the appropriate
measurement, so that it is possible to find the appropriate method/function to call easily. The
general structure is:

• Use cases

o Features

▪ Measurements

5.3.3 Custom measurements

The library provides means to app developers to provide additional measurements, called
“custom” measurements. These measurements will be parsed and stored alongside the
rest of the measurements, but they will not be included as part of any standard KPI
computation. To distinguish them from regular measurements, all these measurements
are organized into a special use case called “Custom”. When logging a custom
measurement, the Library user can define to which feature and measurement it belongs.
This affects the classification of the measurements, when stored in the measurements
database. In addition, the user can provide zero or one arguments for a custom
measurement

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 19/97

6 RAN (Radio Access Network)

No updates.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 20/97

7 EPC

7.1 EPC Architecture

The testbed can create automatically an EPC architecture to be used in the different
experiments. The current architecture that is deployed with the EPC plugin is depicted in the
following figure.

Figure 10 EPC architecture

The interfaces which are not shown in the figure are setup in different loopback interfaces as
per the following table.

Table 4: EPC Elements loopback IPs and not depicted interfaces

Element IP loopback Interfaces not depicted

MME 127.0.0.5 S10, M3,S13, S3, SBc, SGs, S102, Sm, SLg, SLs, Sv

SGW 127.0.0.4 Gxc

PGW 127.0.0.2 S5, S2A, S2B, Gx

HSS 127.0.0.1 Zh, Cx, SLh, Sh, STa, SWd, SWm

PCRF 127.0.0.3 Gx, S9, Sxx

The configuration can be adapted to any user willing to test any particular interfaces or
component on the network and in future releases of the testbed the use of more reference
deployments will be explored to support other scenarios.

7.2 EPC Triggered Procedures

Besides automatically deploying the EPC the plugin is also able to trigger certain procedures
on the network. The ones that are currently supported are the following:

- MME Detach IMSI, triggers a detach procedure for a given IMSI. The detach message
will be of type 1, cause 0 and indicate that a reattach is required. This is useful to obtain
multiple attach samples in order to analyse both the behaviour and time consumed by
the procedure.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 21/97

- MME UE Context Release IMSI, which triggers a UE context release with cause group
3 and cause value 0.

- MME Paging IMSI, tells the MME to initiate a paging procedure for the given IMSI.

- PCRF Create Dedicated Bearer. The command will create a dedicated radio bearer
matching a service with the following parameters (that have to be provided by the user):

o IMSI

o UE IP

o QCI (Quality Class Indicator)

o Maximum Bit Rate for uplink and downlink

o Guaranteed Bit Rate for uplink and downlink.

- PCRF Release Dedicated Bearer. The command will release a dedicated bearer
matching the following parameters:

o IMSI

o UE IP

o QCI

More details on the implementation of the system are provided in D4.1 and in the internal
deliverable “EPC SCPI Server”.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 22/97

8 Transport

TNO has deployed a MANO in the TRIANGLE testbed. After an initial study phase, and in
agreement with the TRIANGLE partners, the MANO provided by Openstack, Tacker, was
selected. Tacker, along with the full NFV stack provided by Openstack, was installed on one of
the TRIANGLE local servers at UMA (Figure 11).

Figure 11: MANO deployment architecture

For this installation, the FUEL installer from OPNFV was selected since it was the only OPNFV
installer which delivered a usable environment.

Table 5: OPNFV FUEL installer details

Virtual edition
installs
flawlessly?

OS Tacker
installed?

Openstack OpenDaylight OVS-
DPDK

Reboot
survive

No (manual
patching
needed, manual
plugins patching
and compilation
needed)

Ubuntu
16.04

Yes,
version
(0.0.1)

Newton L3 but plug-in
crashes

Yes (on
hardware)

Yes

Using MANO, we managed to on-board a VNF and deploy an instance whose state was to be
monitored by MANO. Should the instance stops responding to ping messages, MANO takes an

Virtual Infrastructure
Manager (OpenStack)

MANO (Tacker)

Networking module
(Neutron)

vNet

Compute module
(Nova)

REST API, CLI

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 23/97

action of respawning it. This functionality is planned to be used for all deployed services after
full integration of our extensions.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 24/97

9 UE (User Equipment and accessories)

9.1 Supported UEs

The user equipment has to be physically connected to the testbed as shown in Figure 12. First,
the UXM Wireless Test Set integrates channel emulation and digital generation of impairments
such as AWGN, which is a critical feature to achieve high accuracy when setting SNR
conditions. In particular, standard multipath fading profiles defined by 3GPP are supported to
emulate reference propagation conditions. In order to preserve the radio conditions configured
at the UXM Wireless Test Set the radio connection is conducted through cables and the devices
are enclosed in a shielding box.

For testing purposes most UEs typically contain small antenna connectors which are normally
hidden from the user, these connectors are used for the cable connection to the UXM. In order
to integrate a new device in the testbed the type of antenna connector has to be identified and
its location in the main board discovered. Usually, manufactures don’t offer this information.
After successive and thorough searches on the Internet the type of connectors used by
Samsung have been identified and the antennas located as shown in Figure 14. The device
presents a total of 4 antennas: 1 main and 1 diversity for low frequencies (LF) and 1 main and
1 diversity for high frequencies (HF).

Second, to analyze properly power consumption, the device must be powered directly by the
N6705B power analyzer. The battery has to be removed and a physical connector has to be
built based on the type of the battery connector available in the device.

Figure 12 User equipment connectorization

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 25/97

Figure 13 iPhone 7 plus

Figure 14 Samsung Galaxy S7

Table 6 shows the status of the commercial devices connected to the TRIANGLE testbed.
Samsung Galaxy S4 and Samsung Galaxy S7 are fully integrated (radio and battery are
connectorized). We are working on the connectorization of iPhone 7 Plus, the type of the
antenna connector has not been identified yet. A potential solution for those devices, which
cannot be connectorized via cables, would be to use a contact antenna like the one shown in
Figure 15. We are also working in the addition of latest devices models.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 26/97

Figure 15 Contact antenna

Table 6 Current status of devices integrated into the testbed

Device
Main Ant 1
(HF)

Main Ant 2
(LF)

Diversity
Ant 1 (HF)

Diversity
Ant 2 (LF)

Battery

Samsung Galaxy
S4

Yes N/A
Yes N/A Yes

Samsung Galaxy
S5 Neo

Yes N/A
No N/A Yes

Samsung Galaxy
S6

Yes N/A
Yes N/A No

Samsung Galaxy
S7

Yes No
Yes No Yes

iPhone 7 Plus No No No No No

10 Local applications and servers

10.1 DANE (DASH-Aware Network Element)

TNO’s extension adds a DANE (DASH-Aware Network Element) in the TRIANGLE testbed. The
DANE is a recently standardised network element [2][3] whose aim is to provide network
assistance to video streaming clients supporting the MPEG-DASH (or the 3GP-DASH) protocol
[3],[4]. Specifically, the DANE supports the SAND protocol [2][3], which enables it to provide
quality-related assisting information to the streaming clients, asynchronously using

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 27/97

Websockets. Providing this information to clients reduces the chance of freeze events and of
frequent switches between low and high video streaming bitrates.

A DNS entry is configured for the DANE (“http://dane”), which runs on the “local servers” of the
TRIANGLE testbed and implements the “Consistent QoS / QoE” profile defined in [3]. In
particular, the DANE awaits for Websocket connections from streaming clients on port 9000,
and is enabled to receive a “SharedResourceAllocation” message from connected streaming
clients, specifying a list of bitrate values corresponding to different bitrates in which a video
stream can be provided by the streaming server. Based on information about the bandwidth
available to the UE in the RAN, the DANE makes a decision with respect to which video stream
bitrate the streaming client can support, and communicates this information to the client via a
“SharedResourceAssignment” message. As the bandwidth available to the UE in the RAN
changes, the DANE recalculates the corresponding video streaming bitrate that the client can
support, and communicates it to the client again via a “Shared ResourceAssignment” message.
Figure 16 pictures the DANE within the context of the TRIANGLE testbed, including a streaming
server offering DASH content and a VR streaming application consuming it.

Figure 16 SAND architecture within the TRIANGLE testbed, including DANE, DASH streaming
server and DASH VR app

As can be understood, the DANE needs to obtain an estimation of the bandwidth available to a
UE in the RAN at any given moment. This mechanism is not currently described in any standard
and it is left up to the eNodeB and DANE vendors’ discretion. In the TRIANGLE testbed, this
mechanism is enabled as follows. The DANE exposes a REST API that can be used to set the
bandwidth value. The REST API is invoked within a “test scenario” executed via the Core
Sequencing Engine of TAP Figure 17. In fact, for each test scenario, the average bandwidth
that the UE is expected to achieve has been previously computed via measurements with iperf.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 28/97

Figure 17 Setting the DANE’s bandwidth within a TAP’s test scenario

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 29/97

11 Extensions and new features

11.1 GPS emulation

The importance of including an option to generate GPS signals in the 5G testing benchmark
framework, is an incipient need in many aspects. Making possible to run non-static scenarios
would allow to test more realistic situations that the devices will have to face: continuous
changes of location, speed, etc. In addition, there are many applications that require dynamic
scenarios for testing correctly such as obviously those related to navigation and location
systems, sport and fitness tracking apps, m-health applications, etc.

11.1.1 USRP

The main component of the GPS signal emulation system is the Universal Software Radio
Peripheral (USRP), which is a particular software-defined radio (SDR) platform.

The USRP is a family of boards for radio software implementation, designed and sold by Ettus
Research, a company that belongs to National Instruments. It was specially designed with the
main purpose to provide an affordable family of hardware for the implementation of SDR
systems. As it was designed to ease the developing of low-cost SDR applications, there are
plenty of open-source tools that can be used to control the USRP such as the GNU Radio
platform or free resources (libraries or schematics of the USRP boards) available in the official
Ettus website.

Among other advantages, this hardware allows the design of RF applications from DC to 6GHz,
including the possibility of developing multiple antenna (MIMO) systems. It also incorporates
AD/DA converters, an interface for signals in RF and a FPGA which is responsible for the
processing and conversion of the signal to different frequencies. After the signal has been
processed and the data has been sampled by the FPGA, the information is sent to the computer
via USB.

Specifically, the USRP used in TRIANGLE is the USRP B210. This platform belongs to the
family of USRP Bus Series, and they are characterized by having high-speed USB 3.0
connection for streaming data to the host computer. Besides this, it also includes the AD9361
RFIC direct-conversion transceiver, which provides up to 56 MHz of real-time bandwidth, and
an open and reprogrammable Spartan6 FPGA. With all these characteristics, it allows the
configuration of 2 transmitters and 2 receivers (half or full duplex), to implement a coherent 2x2
MIMO system, and a modifiable ADC/DAC sampling rate of 12 bits. Figure 18 shows how to
connect the RF output of USRP to the UE GPS antenna.

In addition, it includes the possibility of adding daughter boards that would expand its
functionality and make it configurable for most of the signal spectrum.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 30/97

Figure 18 Connecting USRP output to the UE GPS antenna

11.1.1.1 Control of the USRP

11.1.1.1.1 GNU Radio

GNU Radio platform is a free and open-source software development toolkit that provides signal
processing blocks to implement software-defined radio systems. Among others advantages,
what makes GNU Radio special is that includes a graphical and friendly environment in which
applications can be implemented by using these predefined blocks (filters, synchronization
elements, equalizers, modulators and demodulators, encoders, decoders, etc.). Also, this
platform provides mechanisms to connect and manage the communication and transmission of
data between different processing blocks.

Another advantage of GNU Radio is that the implementation of the processing blocks
themselves or more specific applications, could be programmed using Python by means of the
use of GNU Radio’s libraries, which are implemented in C ++.

Besides, using GNU Radio the USRP can be configured using the UHD driver, through which
different parameters can be configured such as the choice of the antenna, transmission
frequency, gain and also decimation and interpolation factors.

GNU Radio runs on Linux, Mac and Windows platforms and since it is an open-source tool,
there are a huge number of applications already implemented and freely available on the
Internet.

11.1.1.1.2 UHD (USRP Hardware Driver)

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 31/97

The UHD is the driver created by Ettus Research for application development on all USRP
products. It also provides the mechanisms that make possible the interoperability between
different USRP families. This driver, together with GNU Radio offers a simple interface to use it
for the control of the USRP.

This driver is also based on an open-source software and it is available on Linux, Windows and
MAC OS. The aim of UHD is to provide an API (Application Programming Interface) as well as
the driver needed to control the USRP. UHD offers cross-platform support for multiple industry
standard development environments and frameworks, including RFNoC, GNU Radio, LabVIEW
and Matlab/Simulink, but it also offers a stand-alone mode (no operating system is required to
run) through the API, programming directly on the UHD. For the stand-alone mode, it is
important to know that both the driver and the firmware of the UHD are programmed in C/C++
whereas Verilog is the one used for the control of the FPGA.

Through UHD is how in this system USRP’s parameters such as gain, transmission frequency,
sample rate and the number of bits of the I/Q modulation can be modified.

11.1.2 GPS emulation with USRP

11.1.2.1 Software-Defined GPS Signal Simulator

Software-Defined GPS Signal Simulator (GPS-SDR-SIM) is an open-source programme
available in the GitHub platform. Under MIT license, this software generates GPS baseband
signal data streams, which can be converted to RF using software-defined radio platforms, such
as bladeRF, HackRF, and USRP. Despite the word “simulator” in its name, what this tool
actually does is not a simulation of a GPS signal but an emulation of it, it really generates a
GPS signal which can be received by a GPS receiver.

In the first place, to generate a signal the user has to specify the GPS satellite constellation
through a daily GPS broadcast ephemeris file (brdc). These files are available on the Internet
(ftp://cddis.gsfc.nasa.gov/gnss/data/daily/) and updated every day.

Using these files, the program generates the calculations of the pseudo-distances and Doppler
frequencies for the GPS satellites in view. These data are then used to generate digitized I/Q
samples for the GPS signal in the L1 C/A band (the civil band), which are then converted into
RF signals using SDR platforms that can provide a quadrature modulation in this band, such as
the USRP in this case.

A great variety of parameters can be configured using this program in addition to the ephemeris
file, which is a mandatory parameter. It also enables to specify the scenario date, the duration
of the emulation, the possibility of signal emulation in static or dynamic mode, to set a specific
sampling frequency of the USRP or the number of bits of the I/Q modulation, and even the
option to skip the ionospheric delay that the code includes for spatial scenarios.

The following command in a Linux operating system, would use this program for emulate a
signal in a static scenario with the parameters that are shown (the ephemeris specific file,
coordinates, duration, sample rate and number of bits for modulation).

$./gps-sdr-sim -e efemerides1703.17n -l 50,30,15 -d 120 -s 2500000 -b 16

http://cddis.gsfc.nasa.gov/gnss/data/daily/

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 32/97

11.1.2.1 GPS-SDR-SIM-UHD

The repository includes a python script to transmit the samples to the USRP in a very simple
way. This program uses GNU Radio to control the parameters of the USRP and allows the
control of the board through the execution of a command line in which different options can be
customised.

The program takes as an argument the simulation file created before and sends it to the USRP
with the configuration required.

$./gps-sdr-sim-uhd.py -t gpssim.bin -f 1575420000 -x 0 -s 2500000 -b 16

In the command line above, the program takes the simulation file that had been created
previously and sends it to the USRP with the GPS civil band transmission frequency, 0 dB gain
which should be good enough to receive the signal, sample frequency of 2.5 MHz and 16 bits
for the I/Q modulation. The last two parameters must be exactly those for the USRP B210,
otherwise the GPS receptor would not receive the signal correctly.

11.1.2.2 KML to CSV

The format used to save customized routes created by Google Earth or Google Maps is a KML
(Keyhole Markup Language) file. For this reason, a program that enables the use of this type of
files on the GPS emulator has been implemented.

Introducing just the name of a specific route saved in a KML file, the program extracts the
coordinates of the route (leaving aside the rest of the data this file contains) and makes possible
the conversion into the appropriate format for the emulator to generate the signal simulation file.

This program also allows the configuration of the speed of the designed route for its emulation.
What the program actually does, is the interpolation of the saved points of the route. The number
of new points interpolated depends on the speed, (the slower it is the more number of new
points are needed).

To calculate the interpolated points a spherical-Earth model has been used, ignoring ellipsoidal
effects. This gives errors typically up to 0.3% which has been considered accurate enough for
this purpose.

Besides this, it also enables to configure a time in which a fixed position will be emulated in
order to settle the GPS signal in the receiver. The program will create the necessary number of
points to achieve the time required, considering that for the emulator the sampling rate to read
the user motion file (the csv file) has to be 10 Hz.

The next command would create a user motion file from a route called “seattleSTAR.kml”, with
a speed of 10 m/s, and a settlement period of 8 seconds. The last parameter names the user
motion file with a specific name.

$./kml2csv.py -k seattleSTAR.kml -s 8 -v 10 -o umFile

 Figure 19 shows how to create a route and the resulting XML file.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 33/97

Figure 19 Google Maps route and XML file

11.2 VR Applications Testing

Virtual Reality is a 5G use case identified in the Work Package 2. The Release 1 of TRIANGLE
testbed did not have the measurement capability to test this type of applications. We have
developed in TRIANGLE a testing solution for VR applications on Android devices in order to
close that gap between the testbed capabilities and the test specifications.

This testing solution has not yet been integrated in the Release 2 of the TRIANGLE testbed and
has been validated as standalone module. The integration of the module in the TRIANGLE test
bed has been planned for Release 3.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 34/97

11.2.1 Requirements

The goal of VR applications is to emulate a natural and fluid interaction between the user and a
virtual world, which will demand network resources. How far from natural and fluidity will
determine the quality of experience perceived by VR users

When the VR is implemented on a mobile phone, the accelerometer and gyroscope are the
components that provides the app a sense of movement, enabling users moving to discover the
surrounding world by moving their heads.

Nowadays, and this may change in the near future, VR experience is fixed, meaning that users
cannot just get up and walk around in order to discover the virtual world. Movement is
implemented by the VR apps by tapping on the phone screen or the corresponding button on
the HMD (Head-Mounted Display) host.

The KPIs of interest for this type of application will surely depend on the business logic to which
the app belongs. However, relevant common KPI were identified in the D2.2 Appendix 4 [D2.2].
Table 7 is an extract from the Apps User Experience Test Specification (AUE).

Table 7 – VR Application User Experience Key Performance Indicators

KPI Definition

Time to load the
virtual world

Time elapsed from selecting a scenario (world, experience, etc.) to loading the 3D
visual context

Immersion Cut-off
Probability that successfully started immersion is ended by a cause other than the
intentional termination by the user

In summary, a repetitive and automated test suite for measuring VR application has the
following three requirements:

• Stimuli:

o Rotating the device in the three-spatial axis for discovering the virtual world.

o Emulating taps on the device screen for moving ahead.

• Responses:

o Capturing the state of the application and visualizing certain content from the
virtual world. This is required for measuring the KPI but also for automatically
browsing the virtual environment to follow a given test script.

11.2.2 Architecture

Based on the requirements exposed in the previous section using a three servo motors
mechanic platform is necessary for the stimuli. Additionally, an IR (Image Recognition) based
solution is also necessary to capture the response from the VR app host (Android phone).
Figure 20 shows the high level architecture of the VR testing solution implemented in
TRIANGLE.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 35/97

Figure 20 VR test module architecture

An important aspect to consider in this module is the accuracy of the servo motors because one
of the common features of the VR apps is that they use a kind of visual aims so that users can
select a menu option for browsing throughout the app.

11.2.3 Robotic Arm

A robotic arm has been designed to support a device phone on top. This enables that the test
script can force the phone to move in the three-spatial axis thus discovering the surrounding
virtual world.

Three servo motors constitute the robotic arm for the three-spatial axis. The one place at the
bottom rotates in the axis called “yaw”, the one in the body in the axis “roll” and the one at the
bottom in the axis “pitch”.

Table 9 shows the position range and reference system used by the servos:

Table 8 – Robotic arm position range and reference

Axis Range

Yaw

Roll

0
-180 +180

0 -90 +90

Phone control: touch and capture

Servo motor control

Test
script

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 36/97

Pitch

A controller board drives the servo motors. This controller is connected to the test script host
(the TRIANGLE test bed) via serial communication over USB. The commands dictionary
basically just includes commands for setting and getting the position of the servo motors.

11.2.4 Controller Commands

Two commands are needed for the implementation of this module.

Command 1: Set position of the servo:

#<ch> P <pw> S <spd> ...# <ch> P <pw> S <spd> T <time><cr>

• <ch>: Servo channel number, 0 - 23

• <pw>: pulse width(us), 500 - 2500; the destination position

• <spd>: single-channel speed (us/s)(Optional)

• <cr>: carriage return, the symbol of the end, ASCII code 13 (Required)

• <esc>: Cancel the current command, ASCI code 27

Command 2: Get position of the servo:

QP<ch><cr>

• <ch>: Servo channel number, 0 - 23

This command returns the current pulse width of the servo in microseconds.

11.2.4.1 Auxiliary Commands

We have implemented some “utile” functions in order to facilitate further implementation of test
scripts.

Position conversion degrees- µs

We have implemented a function to convert the magnitude of the position from pulse width (µs)
into degrees. This way is much more intuitive for programming purposes.

The function to convert from µs to degrees is:

Angle (degrees) = (Central position (µs) – Angle (µs)) / Time to spin 180* in µs

The function to convert from degree to us is:

Angle (µs) = Central position (µs) – (Time to spin 180º (µs) * Angle (µs)) / 180

0

-90

+90

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 37/97

Table 9 shows the reference values needed in the conversion functions for the servos used in
the TRIANGLE testbed:

Table 9 – Robotic arm reference values

Axis Central Position (µs) Time to spin 180º (µs)

Yaw 1450 1700

Roll 1550 1650

Pitch 1450 1750

These values are obtained by calibration. More specifically, sending PUTTY commands to set
the reference position and visually checking. This process must be repeated in case the servo
are replaced.

Wait until reach position

As both native commands (get/set) are non-blocking, we have implemented a blocking function
which waits until the servo has reached a set position.

Stop servos

There is no native command to stop the servos. For this reason, we have implemented a
function to stop the servos. This will help for writing test scripts, for instance, when there is need
to move the phone all around until it finds certain object in the virtual world. Basically, this
function reads the current positions of the servo and right after sends the native command for
setting that position.

11.2.5 Image Recognition

Image Recognition is used in this module for two main purposes:

1. Finding objects in the virtual world, which is the foremost importance for measuring the
KPI of VR apps.

2. Browsing throughout the menus of the app where web driver based technologies
(Android UI Automation) does not work, i.e., GPU powered user interface.

We have used openCV (open Computer Vision) library as Image Recognition engine in
TRIANGLE. This library implements functions for comparing images, more specifically object
and its containers, providing a matching score (from 0 to 1). This totally meets the requirement
of finding patterns (object) in the virtual world (container) and enables the implementation of the
KPI Time to load virtual world / scene.

Figure 21 shows how openCV refers to the axis depending on the image orientation.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 38/97

Figure 21 OpenCV system reference

From the comparison result the library provides the coordinates of the maximum matching point
(circle inside the object in Figure 21). The openCV-based image matching process implemented
in TRIANGLE is as described next.

The container image comes from a buffer provided by “minicap” library which runs on the phone
and contains the phone screen (i.e., screen sharing) in near real time basis (see section
11.2.6.4). The buffer contains some header bytes, which provides metadata about the captured
image (version, size, orientation, etc.). Based on that information pointing the first byte of the
image (coded in JPEG) is possible. openCV operations do not work on a specific image coding
format. Rather, it uses a matrix format called Mat. Then, decoding the image buffer into this
matrix is the first step. Then, both container and object images are grey scaled for finding the
brightest point, which corresponds to the maximum matching point (using matchTemplate
function).

openCV implements several alternative algorithms for the matching function: CV_TM_SQDIFF,
CV_TM_SQDIFF_NORMED, CV_TM_CCORR, CV_TM_CCORR_NORMED,
CV_TM_CCOEFF, and CV_TM_CCOEFF_NORMED.

In TRIANGLE we decided to use CV_TM_CCOEFF_NORMED because after experimentation
turned to be the one with higher successful matching rate.

11.2.6 Interaction with the phone

In order to interact with the phone there are two alternatives: ADB (Android Device Bridge) and
the high performance library “minitouch”.

11.2.6.1 Adb

Adb is a general-purpose command line tool for debugging Android phone via USB interface.
We have used this tool to program from the test script tapping and swiping on the screen phone.

The response time of this tool since the test script sends the command until the tap really
happens on the phone varies from 0.5 to 1 s approximately. This performance is sufficient for
some test scripts operations such as browsing on the app menu or tapping on the screen to
move ahead in the virtual world. However, there may be some operations to automate which

Container

Object

Object

Container

X

X

Y

Y

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 39/97

require higher performance, for instance tapping at moving targets in VR shooter apps. Then,
“minitouch” library (see section 11.2.6.2) is optionally required for use cases.

Additionally, Adb could be used for screen sharing by using its screen shooting command.
However, the repose time of this function is very high, up to 3 s. Screen sharing is a mandatory
performance requirement because the capture frame rate depends on it. Therefore, Adb has
been discarded for this purpose and “minicap” library is mandatorily required for the
implementation of the module.

11.2.6.2 Minitouch

Minitouch library provides a direct socket interface to Android phones for performing multi-
touching and swiping operations. The response time is very high and sufficient for tapping
moving targets. Experiments proves that this library performs response times around 50 ms and
even lower.

11.2.6.3 Phone data usage

In order to pull out the data used by the phone while executing a VR app we use the information
from the following file from the phone file system:

"cat /proc/net/xt_qtaguid/stats | grep -E \'nw_iface.* app_uid\'\"

Where the variables are:

• nw_iface: Network interface

• app_uid: this UID of the VR app under test.-

This file contains the following fields:

idx iface acct_tag_hex uid_tag_int cnt_set rx_bytes rx_packets tx_bytes

The data usage is counted in these two fields: rx_bytes and tx_bytes.

11.2.6.4 Minicap

The screen capturing rate (the number of screen captures per second) is the highest
requirement of the software of the module. Minicap library provides a direct interface socket with
the phone to get screen captures in a high rate. The library documentation claims up to 40
frames per second. This is sufficient to cover all foreseen testing scenarios in VR apps.

Minicap uses a virtual screen resolution. The screen captures are encoded in JPEG and scaled
to that virtual resolution. This way the application (i.e., the TRIANGLE test script) does not need
to care about the actual resolution of the phone. This is important because there are other
coordinates reference systems in the module such as the openCV, the robotic arm and
minitouch. All components of the module using the same coordinate’s reference system
appeared a must in the implementation of this module.

11.2.7 Validation

We have used the reference VR App called “Google Cardboard” for the validation of this module.
Figure 22 shows the validation scenario.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 40/97

Figure 22 VR test solution validation

The test scripts run on the Controller host which uses all the components of the module:
openCV, minicap, minitouch and the robotic arm. The Controller is connected to the platform
via two USB cables, one for the phone (minicap, minitouch) and another for the robotic arm.
The phone is connected to Internet with WLAN. In the network side, Netem is the software we
have used to set the network conditions, in particular for bandwidth throttling. Netem runs on a
host with two Gigabit Ethernet network interfaces and introduces the impartments on that link.

Figure 28 shows a photo taken in the lab during the validation of the module:

Figure 23 VR validation

Controller

Phone control

Robotic arm

USB

Netem

Internet

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 41/97

The tests have been organized in two main groups.

The first group of the tests aims at determining the optimal configuration of the IR component.
There is one a parameter in the openCV library configuration which determines how restrictive
is the matching operation. The goal is to determine the matching threshold parameter to achieve
the best balance between false matching (i.e., the object is not present but the IR matching
operation returns true) and failed matching (i.e., the object is present but the IR matching
operation returns false). In this procedure we have taken into account that, whenever the
matching operation does not work properly, failed matching (which eventually would mean “KPI
not reported”) is more desirable than false matching (which would mean “a false KPI value”).
The later would introduce noise in further data analytics.

Table 10 compiles the results of the tests. The KPI in the table is the target KPI of the validation,
i.e., time to load the virtual world.

Based on these results we have determined that the optimal matching threshold is 0.80.

Table 10 – Validation results for determining matching threshold

Matching
threshold

Average KPI (s) Deviation KPI (s) Failed matching
Operations

0.75 8.27 1.46 10

0.76 9.17 3.40 8

0.77 9.00 1.87 3

0.78 9.38 1.85 6

0.79 10.65 4.18 9

0.80 9.36 2.68 4

0.81 9.46 1.30 7

0.82 10.95 2.44 6

0.83 10.50 1.63 10

0.84 12.39 4.05 10

0.85 11.75 3.40 6

Once determined the optimal configuration of the IR component we have implemented the test
AUE/VR/001 specified in D2.2 to validate the VR test solution.

Table 10 compiles the results of the tests for different network bandwidths.

Table 11 – AUE/VR/001 Validation results

Bandwidth
(Mbit/s)

Average KPI (s) Deviation
KPI (s)

Failed matching
operations

Unlimited 9.36 2.68 4

1 61.35 8.87 3

2 29.97 3.25 6

3 22.06 4.06 9

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 42/97

4 14.85 4.11 5

5 10.86 2.79 2

6 9.57 1.60 7

The data usage by the phone to load the virtual world has been 8 MB across all the network
bandwidth configurations.

As observed in the results the IR library sometimes fails in the matching operation. Then this
type of testing will require redundant test repetitions in order to get the necessary amount of
KPI values.

11.3 Model Based Testing

Model-based testing techniques use a model of the system under test for automatically
generating test cases with an adequate coverage. We have adopted a model-based approach
to construct app user flows (user interactions) on which we can analyse properties. In this
project, the purpose is to evaluate the app features using a set of KPIs.

In [6] [7], [8], we have constructed the tool MVE for automating the analysis of extra-functional
properties on Android mobile apps, based on model-based testing and runtime verification
techniques. The former was used to generate a large set of test cases from an app model
provided by the app developer/tester, and then the latter analysed the executions of each test
case for certain properties of interest. Model checking technique [10] has supported test cases
generation and runtime verification, in particular SPIN model checker [9]. Model checking is a
formal technique that exhaustively explore all the possible behaviours of a model to verify that
a property is satisfied or not. On the one hand, the exhaustive exploration is used to produce
the test cases, since they correspond with model behaviours. On the other, the analysis of
properties has been used to detect if the application traces (associated to the execution of a
test cases in the real device) satisfies or not the extra-functional property.

The main drawback of this approach is that a reasonably complete model of an app may
generate thousands, if not millions, of user interactions, which are unfeasible to execute on a
real mobile device. Furthermore, if a developer wants to test a specific feature of the app, we
should be able to produce test cases on which the property can be analysed. Currently, to
guarantee this, the model must be manually modified in order to include only the desired
behaviours. The compositional nature of the app models is not enough to make this task easy,
since the user could miss significant behaviours that contributed to the feature being tested
while modifying the model.

In the TRIANGLE project, we have extended the previous approach in two different ways. First,
we explicitly separate the construction of the app model and the specific requirements to
produce meaningful test cases. In consequence, the reduction of the set of test cases happens
during the generation process rather than in the modelling phase. Second, the generation phase
uses user-defined requirements to guide the search of significant test cases. In this way, the
app user flows constructed are guaranteed to satisfy the requirements, and the number of app
user flows is reduced.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 43/97

11.3.1 App model

The app under test is modelled using nested state machines [7]. By providing explicit models,
a developer is able to define the realistic uses of the app, instead of generating random inputs
to test it. An app state machine was composed of one or more view state machines, which
corresponded to the different screens in the app. Each view state machine contained several
nested state machines modelling different uses of the screen. The edges of a state machine
represented the user actions, such as tapping a button or entering text that should be executed
when traversing the edge.

Figure 24 shows an example of the modelling language for the Universal Music Player sample
app from the Android SDK, whose GUI can be seen in Figure 25.

Figure 24 Universal Music Player model

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 44/97

Figure 25 Universal Music Player GUI

The app contains a list of songs classified by genre. The user can select the genre and the first
song to play. Then, the app reproduces the list of songs in a loop starting from the selected one.
The app plays music until the user exits or clicks the pause button. The app model is divided
into two activities: one for selecting a song from genre playlists, called MainView, and other with
a full screen player with the playback controls, called FullScreenView. The model in Figure 24
shows the two activities (MainView and FullScreenView) and the possible user events
(Play/Pause, back, etc.) that can happen during the app execution.
An app user flow is defined as a sequence of user events that goes from an initial state to a final
state of the app state machine. Thus, by exploring the model exhaustively, we were able to
generate all possible app user flows. The app model is provided as an XML file, which is
translated into a PROMELA specification [9]. We then used the Spin [9] model checker to explore
this specification exhaustively. When a valid end state was reached, we recorded the generated
app user flow in a result file. These app user flows were then converted into Java programs that
performed the flows on an actual Android device, using the UiAutomator API.
Figure 26 shows part of the PROMELA specification generated automatically from the app model
in Figure 24. The state machines are translated in a single do loop, where each branch
corresponds to a transition. For instance, the one in line 7 corresponds to the transition between
states S2a and S2b.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 45/97

1 DeviceType devices [DEVICES];
2 # define curBackstack devices [device]. Backstack
3 # define curState curBackstack . states [curBackstack . index]
4
5 proctype device_4107a7166c03af9b (int device) {
6 do
7 :: curBackstack . index > -1 && curState == St_MainView_MusicPlayerSM_S2 ->
8 // Event : selectItem
9 transition (device , VIEW_MainView , 6);
10 curState = St_MainView_MusicPlayerSM_S2b
11 :: curBackstack . index > -1 && curState == St_MainView_MusicPlayerSM_S2b ->
12 // Event : clickBack
13 transition (device , VIEW_MainView , 7);
14 curState = St_MusicPlayer_MainView_MusicPlayerSM_S1b
15 :: curBackstack . index > -1 && curState == St_FullScreenView_FullScreenSM_init ->
16 pushToBackstack (device , St_FullScreenView_FullScreenPlayerSM_init);
17 transition (device , VIEW_FullScreenView , 0);
18 curState = St_FullScreenPlayerView_FullScreenSM_S0
19 // ...
20 od
21 }

Figure 26 Extract of PROMELA specification for test case generation

11.3.2 App User Flow Requirements

The TRIANGLE project defines the KPIs of interest that will be used to evaluate the features of
mobile apps, and therefore, provides the requirements for the app user flows. These
requirements are specified as a set of mandatory states and/or transitions of the app model that
have to be reached, along with their execution order. For instance, in audio streaming
applications, the main KPIs are the bit rate (related to audio quality), the buffering time (time
spent waiting until music play starts or resumes), play length (amount of data streamed) and
buffering ratio (waiting time over listening time). In addition, in mobile phones, energy
consumption is also relevant, especially during playback. All these KPIs require that the app
starts playing music, thus an essential requirement of the app user flows is starting music
playback.

Since we use the exhaustive exploration of Spin, it is natural to describe the requirements as
never claims [9]. The never claim is a special Spin process that executes synchronously with
the system model, and checks whether a property holds. If it reaches the end state (its closing
curly brace), Spin states that the property is violated and produces a counter-example, which in
our case is interpreted as an app user flow that satisfies the requirements. Our methodology
consists of translating all requirements into a never claim to make Spin generates the app user
flows that satisfy them.

Moreover, the never claim can also be used to prune the state space explored, and thus reduce
the time and resources required, since Spin backtracks and explores a different execution path
when the never claim is blocked.

We apply our approach to obtain the app user flows of the Universal Music Player app. In this
case study, we focus on the following requirements:

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 46/97

• The app eventually starts playing a song, which corresponds to reach state S2b of the
app model.

• After that it eventually has to exit. This means that the app has to pass through states
S1b, S0b and the end state of the state machine.

• The full screen activity is never launched.

• The app user flow cannot execute a transition more than once.

Figure 27 Pruning never claim as automaton

Figure 27 represents the never claim of the case study as an automaton. The label !fullScreen
expresses that the full screen activity has been not visited, i.e. Spin never takes the branch in
line 15 in Figure 26. Labels S2b, !S2b and so on specify that the corresponding state of the app
model has been (respectively not) reached. This is checked when the branches are evaluated,
e.g. in line 11. Finally, the label !repeat states that there are no repeated transitions. We have
to define this requirement because in our PROMELA specification, Spin’s global state contains
the app user flow explored so far. Repeating a transition of the app model adds new actions to
the app user flow and produces new states in Spin, thus the matching algorithm does not detect
the repeated transition in the app model. Although it can see as a drawback, this behaviour
allows us to describe other kinds of requirements that explicitly fire an event several times,
which is very useful to discover behavioural errors of the app.

Note that each state of the automaton has two different transitions, one that links two states,
and another that loops in the same state. The linking transitions are guarded with the
requirements and tracks that they are satisfied in the correct order. When the automaton end
state is reached, the corresponding app user flow is returned. A looping transition lets the
execution of the app model advance while its guard condition is satisfied. When none of the
transitions are enabled, Spin stops exploring the current path, pruning the search state space,
as commented above. Therefore, the guard of a looping transition has to be disabled when the
linking transition is enabled (to correctly track the requirements) and when the current app user
flow is not interesting (to prune the search). For instance, in Figure 27, the looping transitions
exclude the paths that have repeated transitions or activate the full screen activity.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 47/97

11.3.3 Evaluation

We have carried out some experiments using Spin 6.4.6, with two different never claims: pr.
and no-pr., as well as without one. The pr. never claim prunes the search as we have just
explained (see Figure 27). The no-pr. never claim differs from pr. in looping transitions, that are
guarded by else instead of more restrictive conditions, such as the ones in Figure 24 Universal
Music Player model. Table 12 shows the results. The first three rows use a maximum app user
flow length (maximum number of app model transitions) of 10, and the bottom three rows use
20. The Flows column shows two values. The first one represents the number of app user flows
that satisfy the requirements. The second one represents all the app user flows explored.
Observe that for a maximum trace size of 10, the no-pr. never claim explores 85 traces, and
only 18 are app user flows that satisfy the requirements. In contrast, the pr. never claim explores
20 traces and finds the same number of valid app user flows. This means that the use of the pr.
never claim drastically reduces the time elapsed in the analysis. The difference between using
the pr. and no-pr. never claims becomes more evident when the maximum length of app user
flow increases.

Table 12 App user flow generation - Experiments

Max. len. Never Flows Time Memory States

10 pr. 18/20 < 1s 9.5MB 1,059

10 no-pr. 18/85 55s 11.1MB 20,787

10 - -/85 < 1s 10.9MB 20,787

20 pr. 20/22 < 1s 9.6MB 1,645

20 no-pr. -/31,159 7.7ha 1.29 GB 13,226,035

20 - -/18,303,632 50.7s 8.1 GBb 74,968,614

a Unfinished after 7.7 hours
b Unfinished after reaching memory limit of 8GB

For example, when using a maximum length of 20 and the no-pr. never claim, after more than
seven hours and 31,159 different app user flows explored (most of them not satisfying the
requirements), the analysis had still not finished. Therefore, our approach, which uses the pr.
never claim to prune the search state space, greatly improves the performance of test case
generation process. If we do not use a never claim at all, the generation of all possible app user
flows is much faster, as seen in third and sixth rows. However, the developer does not know
which ones satisfy the requirements. For instance, in the sixth row, the user ends up with millions
of app user flows, which is not very useful in practice. It is clear that pruning the state space
using requirements is still the best option.

11.4 Traffic Impairments

The testbed now support the configuration of traffic impairments on different interfaces of the
system. These impairments are provided using netem and a Ssh to provide remote access to
the machines involved. The impairments exposed in each of the interfaces are the following:

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 48/97

- Latency, which is defined by the mean, the variance and the correlation. Optionally a
probabilistic distribution can also be specified. Currently the testbed supports normal,
pareto and pareto normal distributions but it could be expanded with new ones in the
future.

- Link errors, defined by their mean percentage and variance.

- Mean duplication of packets.

- Reordering of packets, specified by their link and variance.

Currently the system is designed to allow the previous impairments in the S1 interface and in
the SGi but more interfaces can be enabled on demand very easily. The implementation details
of the actual SCPI server are provided in deliverable D4.1 and in the internal deliverable
“Impairments Plugin Server”.

11.5 Remote PCAP Capabilities

A remote PCAP server has been deployed in the EPC, enabling the capture of traffic in any of
the interfaces. Currently the access to that server is done only from the research profile using
standard tools such as tshark or wireshark.

In future versions the traffic sniffing will be enabled on demand per each of the interfaces (e.g.:
enable capture on S1-MME interface, etc.).

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 49/97

12 Internal test experiment

This section introduces initial test cases designed to validate the investigated KPIs and the
automation capabilities of the TRIANGLE test infrastructure by verifying the performance of
well-known applications such as YouTube and ExoPlayer. The latter is an open source media
player, originally developed by Google with support for DASH [1] adaptive playbacks. The tests
will allow to have an initial baseline of the performance of these applications, and to identify new
aspects of interest. At a later phase we will use these results as reference for benchmarking
evaluation. As a side note, the use of ExoPlayer as test App, given its open source nature,
allowed the inclusion of an experimental measurement extraction library in order to compute the
App’s KPIs.

With respect to the previously defined certification scheme, the developed test cases refer to
Quality of Experience, Device Resource Usage, Network Resources Consumption, and Energy
Consumption. The particular use cases that the Apps currently compared is CS (Content
Distribution Streaming) while the experiments have been run in a UR-PE (Urban Pedestrian)
network scenario.

12.1 Testbed setup

The TRIANGLE testbed uses advanced lab instruments to evaluate applications and devices,
when accessing services over emulated mobile networks, in realistic but controlled experiments.

To orchestrate the different components, the testbed uses the Test Automation Platform (TAP)
from Keysight [12], to coordinate and run the test cases. Each testbed component is controlled
through a TAP driver, which serves as bridge between the TAP engine and the actual
component interface. Some of these drivers are being created as part of the testbed
development. Radio access emulation plays a key role in the TRIANGLE testbed. In the first
release of the testbed, the Radio Access Network (RAN) part will be provided by a UXM
Wireless Test Set from Keysight [13], a mobile network emulator that provides state of the art
test features. From the mobile devices and applications under test point of view, the UXM is
perceived as a real network, even replicating complex RF propagation conditions when
required, as it incorporates a channel emulator.

The testbed includes a set of reference devices for app testing which have to be physically
connected to the testbed. In order to preserve the control over the radio channel conditions
emulated by the UXM Wireless Test Set, the radio frequency connection must be conducted
through calibrated cabling. Additionally, to accurately analyse the power consumption during
the experiments, the devices must be powered directly by the Keysight’s N6705B power
analyser [14]. In the experiments, the DEKRA performance tool is also used to monitor RAM
and CPU usage, as well as to derive QoE measurements for the YouTube sessions.

12.2 Test Configuration

In these initial experiments, we have selected a test configuration reproducing a crowded
environment, where the users would only get access to a fraction of the available time frequency
resources in the cells, as it could happen in a peak hour in the centre of a big city such as
London or Tokyo. The mobile device is connected to a 4G-LTE Rel’12 cell transmitting at Band
3 (1843,5 MHz). Impaired propagation are emulated by setting the EPA5 fading conditions that
cause fluctuations in the cell wanted signal power around -70 dBm in average, and an interfering
cell which is configured to operate at the same frequency 20 dB below the average but with
independently fading conditions. The effect of more distant cells is modelled with a white
Gaussian noise interferer which is embedded in the UXM. The cell is configured for a Multiple

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 50/97

Input Multiple Output (MIMO) multi antenna transmission on Transmission Mode TM3. The
selected Modulation and Coding Scheme (MCS) is set according to what is periodically reported
by the UE via Channel Quality Indication (CQI) reporting messages.

Figure 28 - CDF of the CPU usage [%] for YouTube API and ExoPlayer

Figure 29 - CDF of the consumed Power [W] for YouTube and ExoPlayer

The measurements have been performed on ExoPlayer and the YouTube API while
reproducing the video Big Buck Bunny [15], known to be a commonly used video reference. The
video was streamed in two different ways, the native YouTube multi-codec and the DASH
standard. Both streams were played from YouTube server, in order to make a fair comparison
since the traffic would presumably transverse internet same way.

12.3 Initial Measurements

The measurements cover CPU and RAM usage percentage, video resolution in terms of pixel
density, power in Watts, and received amount of data in kB.

Figure 28 depicts the Cumulative Distribution Function (CDF) of the CPU usage of ExoPlayer
and YouTube. In both cases, CPU use has been monitored at 1 s intervals. For ExoPlayer, it
can be observed that in average 50% of the time the application is almost not using any CPU
resources. Interestingly, most of the remaining active time (40%, from a cumulative 55 to 95)
involves a usage of 40 to 50% of the CPU capacity. The consumption is though reaching a
maximum of roughly 60%.

During the YouTube reproductions, the negligible CPU usage extends only for 10% of the total
time, jumping then to 25% and increasing linearly up to a max of 60% CPU for the remaining
10% of the time. The upper limit is higher than ExoPlayer extending to a roughly 80%. We can
conclude that YouTube CPU consumption is 30% higher during the low activity half of the time,

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 51/97

and 10% higher during high activity phases. ExoPlayer presents a slightly better performance
in terms of CPU. RAM usage has also been analysed, but there are only small differences
between the two players, being the RAM usage of ExoPlayer lower than YouTube by 2-5%.

In terms of resolution, a relevant QoE parameter, it can be noted that the videos downloaded
with ExoPlayer have a resolution of 360p (standard definition) while in YouTube the resolution
is 480p (DVD quality). From these preliminary results, it is possible to deduce that ExoPlayer
has generally better performance in the domain of Device Resource Consumption, while paying
the price in terms of QoE as the resolution is higher in YouTube.

Figure 29 compares the Power consumption of the two Apps. As the video resolution is higher
in the YouTube sessions, it seems reasonable to expect higher consumption. However, the 50
to 100% additional power increase measured cannot be justified by the sole difference in video
resolution. It is then possible to deduce that YouTube is a more power-hungry App compared
to ExoPlayer.

Figure 30 - Cumulative data received by YouTube and ExoPlayer

Figure 30 shows the cumulative amount of data received by the streaming clients. In the
sessions analysed the YouTube client shows a more aggressive buffering strategy, where more
than 90% of the video has been received at half of the playback time. ExoPlayer buffering grows
nearly linearly during the full video playback in steps of approximately 5% of the reproduced
video, after an initial buffering of 10% of the content.

In these initial measurements, given the freedom the applications have when adapting the codec
that they use, we observe also significant differences in the monitored parameters. The different
buffering strategies may also lead to advantages or drawbacks depending on the user behaviour
and network conditions. On one hand, if the user decides to interrupt the reproduction, the
application would waste part of the buffered data and its associated energy drain. On the other
hand, if the network conditions cause temporary outages, e.g., when crossing a tunnel, the
larger amount of buffered data will avoid playback interruptions thus increasing the user
experience.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 52/97

13 TRIANGLE testbed Release 3 specifications

Release 3 is expected to be available by 31st of March 2018. The expected new features for this
release are grouped as follows:

• User point of view: TRIANGLE certification mark (QoE included), extended mobile
device coverage.

• Testbed access:
o Portal: usability improvements, results displayed in the portal & extended

downloadable results.
• Capabilities: iOS extended UE measurement support. Extended support for VR and

AR applications, preliminary support for gaming applications. Extended GPS support.
Expand reference app. Support new app versions (iOS native and Web/Hybrid),
Screenshot feed (performance framerate), Automatic generation of app models from
apps without user intervention, provide testbed booking functionality,

These new features translate into the following updates for each one of the elements of the
tested architecture.

13.1 Interface and visualization (Portal)

Adding support for the new features:

• Extended downloadable results

• Show TRIANGLE Mark, spider diagram(s)

• Support the execution of certification campaigns

• Add Portal support to booking

Add support in the Portal to book the Testbed, view current or future bookings.

• Add Portal support to create the routes for GPS emulation

13.2 Orchestration

The Portal is the user interface for the Testbed and the TRIANGLE test cases. TAP is the engine
that runs the test cases. However, there is much more in order to orchestrate test campaigns
and collect their results. Orchestration system is continuously evolving.

13.2.1 Webdriver tool

• Support new version:

o iOS native

o Web/hybrid

• Record

o Record xy coordinates

• Remote control (VNC)

o iOS

• Screenshot feed (performance framerate)

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 53/97

13.3 Measurement and data collection

A framework to compute KPIs and metric is being implemented. The framework is backed by a
database where all the intermediate and final results are stored. This database should include
information about the test campaign execution to which it belongs, KPIs, MOS, metrics by
scenario and domain, and the aggregated metrics.

13.3.1 Certification and TRIANGLE mark

For certification, a set of metrics will be derived out of the computed KPIs. To rate the product
using the TRIANGLE mark, the metrics will be compared against a set of reference values.

13.3.2 Instrumentation library for iOS

Create a new instrumentation library for iOS, using the same principles as the one for Android.

13.4 User equipment and accessories

New devices will be integrated into the testbed

13.5 Extensions and new features

Automatic generation of app models from apps without user intervention. Fully integration of the
robotic arm.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 54/97

14 References

[1] libimobiledevice. “libimobiledevice A cross-platform software protocol library and tools to communicate with iOS® devices

natively”, online resource http://www.libimobiledevice.org/
[2] “Information Technology — Dynamic adaptive streaming over HTTP (DASH) — Part 5: Server and network assisted DASH

(SAND)”, ISO/IEC 23009-5:2017

[3] “Server and network assisted DASH for 3GPP Multimedia Services”, ETSI 3GPP SA-170732, June 2017

[4] “Information technology -- Dynamic adaptive streaming over HTTP (DASH) -- Part 1: Media presentation description and
segment formats”, ISO/IEC 23009-1:2014/Amd. 1:2015/Cor.1:2015

[5] “Transparent end-to-end packet-switched streaming service (PSS); Progressive Download and Dynamic Adaptive Streaming
over HTTP (3GP-DASH)”, ETSI 3GPP TS 26.247

[6] A. R. Espada, M. M. Gallardo, A. Salmerón, and P. Merino. Runtime verification of expected energy consumption in
smartphones. In Proc. of the 22nd Int. Symposium on Model Checking Software, pages 132–149. Springer International
Publishing, Aug. 2015.

[7] A. R. Espada, M. M. Gallardo, A. Salmerón, and P. Merino. Using model checking to generate test cases for android
applications. In Proc. 10th Workshop on Model Based Testing, volume 180 of EPTCS, pages 7–21. Open Publishing
Association, 2015.

[8] A. R. Espada, M. M. Gallardo, A. Salmerón, and P. Merino. Performance Analysis of Spotify® for Android with Model Based
Testing. Mobile Information Systems, 2017:14, 2017.

[9] G. Holzmann. The SPIN Model Checker : Primer and Reference Manual. Addison-Wesley Professional, Sept. 2003

[10] E. Clarke, O. Grumberg, and D. Peled. Model checking. Mit Press, 1999.

[11] Ricardo Marco Alaez, Jose M. Alcaraz Calero, Qi Wang, Fatna Belqasmi, May El-Barachi, Mohamad Badra, and Omar Alfandi,
“Open Source Based Testbed for Multi-Operator 4G/5G Infrastructures Sharing in Virtual Environments”, Wireless
Communications and Mobile Computing, 2017

[12] Keysight Technologies, “KS8400A Test Automation Platform 2017 Developer’s System Software – Technical Overview”, online
resource, http://literature.cdn.keysight.com/litweb/pdf/5992-1909EN.pdf?id=2796881

[13] Keysight Technologies, “E7515A UXM Wireless Test Set Getting Started Guide”, online resource ,
http://literature.cdn.keysight.com/litweb/pdf/E7515-90001.pdf?id=2459161

[14] Keysight Technologies, “N6705 DC Power Analyzer and Source Measurement Unit (SMU) Modules – Product Fact Sheet”,
online resource http://literature.cdn.keysight.com/litweb/pdf/5989-8615EN.pdf?id=1981218

[15] Blender Institute, “Big Buck Bunny”, website https://peach.blender.org/

http://www.libimobiledevice.org/
http://literature.cdn.keysight.com/litweb/pdf/5992-1909EN.pdf?id=2796881
http://literature.cdn.keysight.com/litweb/pdf/5989-8615EN.pdf?id=1981218
https://peach.blender.org/

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 55/97

15 Appendix 1: Portal API REST

This Appendix describes the API REST provided by the Portal to access the test campaign
information available at the Portal.

15.1 Devices

List all devices

Response

Get a single device

Response

15.2 Users

List all users

Response

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 56/97

Get a single user

Response

15.3 Apps

List all apps

Response

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 57/97

Get a single app

Response

15.4 Features

List all features

Response

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 58/97

Get a single feature

Response

15.5 Test cases

List all test cases

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 59/97

Response

Get a single test case

Response

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 60/97

15.6 Scenarios

List all scenarios

Response

Get a single scenario

Response

15.7 Campaigns

List all the campaigns in the application

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 61/97

16 Appendix 2: TAP plugins. Implementation details.

16.1 Quamotion WebDriver TAP plugin

This plugin allows TAP to send user actions (such as tapping a button or entering a text in a field)
through the use of Quamotion WebDriver. The plugin will provide an instrument to connect to the
Quamotion WebDriver, as well a series of test steps.

16.1.1 Quamotion WebDriver TAP plugin instrument

Table 13 describes the settings of the Webdriver instrument implemented in TAP.

Table 13 Quamotion WebDriver instrument settings

Settings Type LTE Bands

Base URL String
Base URL for the WebDriver API calls.

Default: “http:localhost:17894/wd/hub”

SessionReadyPollPeriod Int
When waiting for a session to be ready, polling

period. Default: 1000 (ms)

SessionReadyTimeout Int
When waiting for a session to be ready,

timeout. Default: 40000 (ms)

Table 14 describes the methods provided by the instrument to control the features offered by
the Webdriver instrument through the TAP plugin.

Table 14 Quamotion WebDriver instrument methods

Method Description

Open

Close

NewSession

Creates a new session for the given app and device, and

makes it the active session.

Required parameters:

• deviceId: The ID of the device

• appId: The ID of the app

Optional parameters:

• clearAppSettings: If true, clear the app settings

before starting the session

• reuseSession: If true and there is an existing

session with the same device and app, use that

instead of opening a new one

Returns:

• Session

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 62/97

WaitForSessionReady

Waits a finite amount of time for the given session to

be ready. The instrument polls the Webdriver

periodically to find out if the session is ready. The

polling period is defined by SessionReadyPollPeriod,

and the number of retries by

SessionReadyMaxRetries.

Required parameters:

• Session

Returns:

• True if the session is ready; false if the session

was not ready before the timeout

GetActiveSession Returns the currently active session, if any

CloseSession

Closes the given session.

Required parameters:

• session

CloseAllSessions Close all sessions in the WebDriver server

16.1.2 Quamotion WebDriver TAP plugin test steps

16.1.2.1 Session management

All the user actions performed in a device must be performed in the context of a WebDriver
session. A session corresponds to a device and an application on that device.

The first release of the plugin only support one active session at the same time.

16.1.2.1.1 New session

Creates a new session (or reuses an existing one) for the given device and app.

Can be used with children. The session will be automatically closed after the children are
executed. Children can get the new session calling GetSession().

Table 15 Quamotion WebDriver New session step settings

Settings Type Description

Webdriver QuamotionWebdriverInstrument

DeviceId string

AppId string

AppFilePath string
Path to the app file (e.g

APK for Android).

Required if the app is no

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 63/97

already loaded in

Quamotion WebDriver

ClearAppSettings bool

Close all active sessions

before opening a new

one

CloseAllSessions bool

Close all active session

before opening a new

one

ReuseSession bool

Reuse an existing

session, if possible. The

app will not be restarter in

that case.

16.1.2.1.2 Close session

Closes the currently active session.

Table 16 Quamotion WebDriver Close session step settings

Settings Type Description

Webdriver QuamotionWebdriverinstrument

16.1.2.2 User actions

There is one separate test step for each of the supported user actions:

• Tap
• Long press
• Enter text
• Back

All of them have the following settings in common.

Table 17 Quamotion WebDriver User action steps settings

Settings Type Description

Webdriver QuamotionWebdriverInstrument

Element string

UI element on which the action will be

performed. The interpretation of this

setting depends on the FindStrategy

setting.

FindStrategy FindStrategy

Use one of the following strategies when

looking for the element:

*Marked

*Name

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 64/97

*Id

*XPath

*LinkText

*PartialLinkText

*ClassName

*TagName

* CssSelector

Wait for element bool

If disabled, try to perform the action on

the element immediately. Otherwise, the

presence of the element will be checked

periodically before executing the action.

PollPeriod int
Polling period when checking the

presence of the UI element

PollTimeout int
Timeout (in milliseconds) when checking

the presence of the UI element

16.1.2.2.1 Tap

Tap an element.

16.1.2.2.2 Long press

Long press an element.

16.1.2.2.3 Enter text

Enters a text in an element, such as a text field.

Table 18 Quamotion WebDriver Enter text step settings

Setting Type Description

Text string Text that will be entered in the UI element

16.1.2.2.4 Back

Does the back action on the device, e.g. the back button in an Android device.

This step only has the Webdriver setting.

16.1.2.3 Queries

Query the UI of the app for the presence of a given element, or for the value of a public property
of that element.

Table 19 Quamotion WebDriver Query step settings

Setting Type Description

Webdriver QuamotionWebdriverInstrument

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 65/97

Element string

UI element on which the action will be

performed. The interpretation of this

setting depends on the FindStrategy

setting.

FindStrategy FindStrategy

Use one of the following strategies when

looking for the element:

*Marked

*Name

*Id

*XPath

*LinkText

*PartialLinkText

*ClassName

*TagName

* CssSelector

QueryProperty bool?

If enabled, the query will return the value of

a public property from the selected UI

element

PropertyName string
Name of a public property from the

selected UI element

Wait for element bool

If disabled, try to perform the action on the

element immediately. Otherwise, the

presence of the element will be checked

periodically before executing the action.

PollTimeout int
Timeout (in milliseconds) when checking

the presence of the UI element

PollMaxRetries int
Maximum number of polling retries when

checking the presence of the UI element

EmitVerdict bool

If enabled, the step will emit one of the two

verdicts configured below. If the element is

present (or the expected value matches

the actual value of the public property),

then 'Verdict if true’ will be emitted.

Otherwise, ‘Verdict if false’ will be emitted.

PropertyValue string

The expected value of the public property

of the UI element. The values will be

compared as strings.

VerdictIfTrue Verdict

The verdict to emit if the UI element is

present (or the property value matches the

expected value).

Verdict if false Verdict

The verdict to emit if the UI element is not

present (or the property value does not

match the expected value).

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 66/97

The step emits the following result:

Table 20 Quamotion WebDriver Query step results

Settings Type Description

Name Type Description

ElementId string

FindStrategy FindStrategy

ElementPresent bool True if the element was found

QueryProperty bool

PropertyName string

PropertyValue value
The value of the property PropertyName, if

it was requested

16.1.2.4 Replay

The step replays a recorded script that contains the required user actions.

Table 21 Quamotion WebDriver Replay step settings

Settings Type Description

Webdriver QuamotionWebdriverInstrument

Script string
Path of the JSON file that contains the

recorded user actions.

Continue on

Error
bool

Whether or not to continue the

execution of the script when an action

fails.

Wait for

Elements
bool

If disabled, try to perform each action

immediately. Otherwise, check

periodically the presence of the

element on which the action will be

performed before executing the

action.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 67/97

Polling period int

Time in milliseconds to wait before

checking for the presence of the

element

16.2 OML TAP plugin

This plugin allows TAP to send the results reported during an experiment to an OML server
(which will store them in a database). This plugin has two main features:

• A ResultListener that integrates with TAP way of reporting results

• A test step that sends arbitrary CSV files to the OML server

16.2.1 OML TAP plugin instruments

The OMLServerInstrument instrument represents an OML server that collects measurements
from experiments.

Table 22 OMLServerInstrument settings

Setting Type Description

Uri string

URI of the OML server. Valid URIs

include:

* 'hostname:port’: for regular OML

servers (default port is 3003)

* 'file:filename’: for local files

Table 23 OMLServerInstrument public properties

Property Type Description

Domain string

Name of the current OML domain, i.e.

experiment. Measurements handled

by this instrument will be stored in a

database with this name.

Table 24 OMLServerInstrument methods

Method Description Method

TryParseTcpUri
Returns the host and port parts

of a OML TCP URI
TryParseTcpUri

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 68/97

The ICsInstrument is an interface that extends IInstrument . It is used in conjunction with the

step that sends CSV files to OML, in order to know which are the CSV files produced by a tool.
This is intended as a thin wrapper around an external tool that is not properly integrated with
TAP yet, and thus does not publish its results to ResultListeners.

Table 25 ICsInstruments public properties

Property Type Description

CsvMeasurementPoints IEnumerable<CsvMeasurementPoint>

A mapping between

the measurement

points provided by the

tool, and the CSV file

that contains the data

for that measurement

point

16.2.2 OML TAP plugin test steps

The “Configure OML” step configures an OML experiment (aka domain) for the given OML
instrument for the rest of the test plan execution.

Table 26 OML TAP plugin Configure OML step settings

Setting Type Description

CustomName Enabled<string>

If disabled, a random

name will be

generated for the

instrument. If enabled,

use this name.

The “Send CSV” sends a CSV file to the OML server. The CSV file can be provided as a file
path, or by an implementation of ICsvInstrument, which can provide more than one (with the
respective measurement point name).

The CSV file will be read whole and its contents sent to the OML server. A file will be considered
as one measurement point, and thus will be stored in one table. If the CSV file has headers,
those will be used as the names of the columns.

The step will support the following OML types:

• Int32

https://triangle.morse.uma.es/redmine/projects/testbed-orchestration/wiki/OML_TAP_plugin_instruments#ICsvInstrument

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 69/97

• Int64
• Double
• String

CSV values will be converted to the one that makes more sense. In particular, boolean values
will be stored as strings (for now at least).

Table 27 OML TAP plugin Send CSV step settings

Setting Type Description

OmlServer OmlServerInstrument

CsvSource CsvSourceEnum

The source of the CSV

file (or files) to send:

* File

* Instrument

CsvInstrument ICsvInstrument

The CSV files, and the

respective

measurement point

names, will be

provided by this

instrument

FilePath string
The path to the CSV

file to send

HasHeaders bool

If enabled, the first

non-empty line of the

CSV is assumed to

define the headers of

each column.

Separator Comma, tab, semicolon

Column separator for

the CSV file. Default is

comma.

AppName string

The name of the app

sending the CSV data.

If empty, and the

source is an

instrument, its name

will be used.

Otherwise, “csv2oml”

will be used as the

default.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 70/97

MeasurementPointName string

The name of the

measurement point for

the CSV data

16.2.3 OML TAP plugin result listeners

The OML result listener integrates with TAP to send all the results produced by test steps to an

OML server. Each TAP ResultsTable object will be mapped to one measurement point of the

same name. Since TAP does not distinguish the source of the results, all of them will be mapped
to the same OML app and node ID, which can be set in the result listener.

Table 28 OML result listener settings

Setting Type Description

OmlServer OmlServerInstrument

OML server where

measurements will be

sent

SenderId string ID of this node, for OML

Appname string
Name of this app, for

OML

16.3 App instrumentation TAP plugin

This plugin allows TAP to parse logs from devices to extract measurements produced by the
instrumentation library. These measurements will be published and processed by the corresponding
result listeners. This plugin does not provide any additional instruments.

16.3.1 App instrumentation TAP plugin steps

16.3.1.1 Parse Measurements

This step can be used for extracting the measurements provided by the instrumentation library,
from a previously saved file, or directly from the device by using Logcat. The step is compatible
with the measurement points defined in the instrumentation library, so it is able to extract all the
measurements without the need for any additional configuration.

Table 29 Settings for the Parse Measurements step

Step Setting Description

Parse Measurements
Source /
Measurement
source

Source type from where the measurements will be
extracted. The available sources are ‘adb’ and
‘Logcat file’

 Android / adb
When using adb, this setting selects the adb
instrument to be used.

Android / Device
ID

Android device ID to use, this setting is only required
when multiple devices are connected through adb

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 71/97

 File / File path
Path of the file that contains the output received from
Logcat.

16.3.1.2 Parse Regex in Logcat

This step can be used for generating custom results by reading specifically formatted messages
from Logcat. The step looks for messages that match a regular expression defined by the user,
and reports each of the matched groups in a new TAP result. The name and columns of this
result are also defined by the user, with every matched group content being assigned to one of
the columns in order.

Table 30 Settings for the Parse Regex in Logcat step

Step Setting Description

Parse Regex in Logcat DUT / adb Adb instrument that will be used.

 DUT / Device ID
Android device ID to use, this setting is only required
when multiple devices are connected through adb

Logcat filter / Filter
by tag

Configures the step for listening to specific tags in the
messages.

 Logcat filter / Tag Tag filter to use

Logcat filter /
Priority

Priority of the messages.

Results / Result
name

Name of the results that will be generated by the step.

 Results / Regex

Regular expression that will be used for generating
the results. The regular expression must contain one
capture group for each of the columns in the results
generated.

Results / Column
names

Comma separated list of column names for the
generated result.

16.4 Android TAP plugin

This plugin provides a collection of steps that can be used for controlling an Android device
connected to the TRIANGLE testbed through the Android Device Bridge.

16.4.1 Android TAP plugin instruments

The plugin defines a new TAP instrument (AdbInstrument) that acts as an interface between the
steps and the device. This instrument makes use of an ADB server, which can be running on the
same machine as TAP or on a remote machine accessible through a network connection.

Table 31 Android TAP plugin instruments

Instrument Setting Description

Adb Instrument
adb / adb
Executable

Location on the local machine of the adb executable
file.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 72/97

Remote / Remote
adb

Specifies whether to connect to an adb server running
on the local machine (default) or on a remote machine
as configured in the settings below.

 Remote / Host Address of the remote server host

 Remote / Port
Port where the remote adb server is listening for
connections.

16.4.2 Android TAP plugin steps

There are some settings that are shared among the steps:

Table 32 Settings shared by the Android steps

Step Setting Description

All steps adb / adb The adb instrument targeted by the step

 Device / Device ID
Optional. If more than one device is connected to the
adb server, the commands are sent to the device
specified in this setting.

Adb Command and
Activity Manager

Advanced /
Number of retries

Number of times in which the action is retried before
emitting a ‘Fail’ verdict.

Advanced / Retry
Wait

Period to wait between two consecutive retries.

Advanced /
Timeout

Time to wait before aborting the execution of the
action.

16.4.2.1 Adb Command

The Adb command step can be used for sending a set of predefined commands to the device
through adb, or for sending a custom command by specifying the arguments that need to be
sent through adb. The supported commands, and their settings are:

- Custom: Sends the specified arguments through adb. This command can be used to
perform any action supported by adb, even if it is not supported by any other step.

Table 33 Settings for the Custom command on the Adb Command step

Step Setting Description

Adb Command
Command /
Arguments

Arguments to send through adb, in the same format
as in the command line.

- Push, Pull: Sends or retrieves a file from/to the device.

Table 34 Settings for the Custom command on the Adb Command step

Step Setting Description

Adb Command
Command / Local
file

Path of the file to be sent or saved in the local machine

Command /
Remote file

Path of the file to be retrieved / saved on the device

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 73/97

- Install: Installs the selected package on the device.

Table 35 Settings for the Custom command on the Adb command step

Step Setting Description

Adb Command
Command / Local
file

Path of the apk package that needs to be installed

Command / Install
options

Options for the adb install command

- Uninstall: Uninstalls the selected package from the device:

Table 36 Settings for the Custom command on the Adb Command step

Step Setting Description

Adb Command
Command /
Package name

Name of the package that needs to be uninstalled.

- Reboot: Restarts the device. This command does not need additional settings.

16.4.2.2 Activity Manager

This step can be used to send commands to a device’s Activity Manager. The Activity Manager
can perform actions such as starting and stopping applications, or broadcasting intents.

All the commands supported by this step can be sent using the Custom command on the adb
command step, but this step can be used to easily perform the most common actions of the
Activity Manager. The supported commands are:

- Start: Starts an activity

- Start Service: Starts the service specified

- Force Stop: Stops all the processes associated with the specified package

- Broadcast: Issues a broadcast intent.

The following table details the available settings for the Start, Start Service and Broadcast
commands:

Table 37 Settings for the Start, StartService and Broadcast commands on Activity Manager

Step Setting Description

Activity Manager
Intent /
Component

Specifies the component name, including the
package name prefix, to create an explicit intent

 Intent / Action Specifies the intent action

 Intent / Data URI Specifies the intent’s data URI

Intent / MIME
Type

Specifies the intent’s MIME type

 Intent / Selector Used to specify the intent

 Intent / Category Specifies an intent category

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 74/97

 Intent / Selector
Used to specify the intent resolution by using the
values on the Data URI and MIME Type settings

 Intent / Flags Extra flags that control the execution of the intent

Intent / Intent
Extras

Represents a list of intent extras that are to be used
by the intent. These extras act as additional
parameters that are sent to the activity that performs
the actions specified in the intent.

Only one setting needs to be specified for the Force Stop command:

Table 38 Settings for the Force Stop command on Activity Manager

Step Setting Description

Activity Manager
Package /
Package

Specifies the package name

16.4.2.3 Adb Airplane Mode

The Airplane Mode step can be used to enable and/or disable this mode on the device.

Table 39 Settings for Adb Airplane Mode step

Step Setting Description

Adb Airplane Mode
Procedure /
Procedure

Specifies the type of procedure to perform: Enable,
Disable or Attach. The Attach procedure forces the
device to attach to the cell by enabling and then
disabling Airplane Mode.

16.4.2.4 Logcat

Logcat is a command line tool that dumps a log of system and application messages from the
device. These messages are commonly generated by invoking the methods on the Log class
from an Android application.

The Logcat step can be used for retrieving the messages from Logcat. These messages can
be saved to a file, either on the local machine or on the device, or displayed in TAP. The user
can also configure the step so that the messages are saved in the background, and later
retrieved by the Retrieve Background Logcat step.

Table 40 Settings for the Logcat step

Step Setting Description

Logcat Filter / Filter tags List of specific tags to be filtered, and their priorities

Filter / Default
filter

If enabled, causes the step to filter all tags not
explicitly filtered in Filter tags

 Filter / Buffers Specific Logcat buffers to listen

Execution /
Execution Mode

Execution mode of the step. In Instant mode, the step
retrieves the current contents in Logcat. In
Continuous mode the step continue running in the
background, retrieving all the content sent to Logcat

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 75/97

until it is stopped by a Retrieve Background Logcat
step.

 Output / Format Format of the saved Logcat messages.

 Output / Target Where the output will be saved or displayed.

16.4.2.5 Clear Logcat

This step can be used to clear the Logcat output from an Android device. Use of this step
ensures that the Logcat output retrieved by the Logcat step does not contain messages emitted
before the test plan execution. This step does not require additional settings.

16.4.2.6 Retrieve Background Logcat

The Retrieve Background Logcat step can be used to stop the background process generated
by the Continuous mode of the Logcat step, retrieving the logcat contents from it.

Table 41 Settings for the Retrieve Background Logcat step

Step Setting Description

Logcat
Logcat /
Background
Logcat

Background Logcat process to retrieve, as returned
by a previous Logcat step.

Logcat / Delete
Device Files

If enabled, the step will remove the temporal files
saved on the device once the contents have been
retrieved.

 Output / Local File
Path of the file to be saved with the contents of
Logcat.

16.5 iOS TAP plugin

This plugin allows TAP to control an iOS device in order to perform key actions, such as restart,
save logs, capture network traffic and launch apps. An iOS device can be an iPhone, iPad or
iPod Touch.

This plugin will make use of the libimobiledevice library [1]. This library provides tools that let a
user communicate with services of iOS using simple commands, similar to Android ADB. These
commands can remotely restart a device and save its syslog, among other actions. To capture
traffic, a virtual interface of the device will be created and tshark software will capture the traffic
that passes through it. To achieve the actions aforementioned, the iOS device must be
connected to a MAC OS machine. The plugin will handle the connection to the remote MAC OS
machine using SSH protocol. Plink software will be used at the local machine to execute
libimobiledevice commands in the remote machine. These commands will run certain processes
at the iOS device.

Table 42 shows the instrument provided by the first release of the iOS TAP plugin. A single
instrument called iOSInstrument will offer the basic properties and methods to send the
libimobiledevice commands to the iOS device. The instrument will handle the connection to the
remote MAC OS machine, and thus the user has to provide the host and SSH port where the
remote machine is running and the path to the plink executable in the local machine. The paths

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 76/97

to the libimobiledevice library and to tshark executable will also be provided. The instrument
verifies if the processes launched are actually started by querying its PID in the remote machine
and setting the steps verdict accordingly.

Table 42 - iOS TAP plugin instrument

Instrument Setting Description

(iOSInstrument)
Handles the connection to the remote MAC OS
machine to communicate with the iOS device using
libimobiledevice commands.

 Plink executable
Path to the plink executable in the local file system
that will be used to interact with the MAC OS machine
where the iOS device will be connected to.

 Host Host name or IP direction of the MAC OS machine.

 Port Port of the MAC OS machine.

 User User of the MAC OS machine.

 Pass Password of the MAC OS machine.

Libimobiledevice
executable

Path to the libimobiledevice directory in the remote
MAC OS file system that will contain the tools used
to interact with the iOS device.

Tshark
executable

Path to the tshark executable in the remote file
system that will be used to capture traffic in the iOS
device

Table 43 shows the steps provided by the TAP plugin. iOSRestartStep performs the restart of
the iOS device, which can be used to force the attach of the device to a base station.
iOSStartLoggingStep starts saving iOS syslog in a file in the remote MAC OS machine and
iOSStopLoggingStep stops saving it. This way, one can save only the syslog provided by iOS
in a given time interval. iOSStartTrafficCaptureStep and iOSStopTrafficCaptureStep work in a
similar way to save network traffic received and sent by any interface of the iOS device. Finally,
iOSLaunchAppStep tries to launch an app installed in the device.

Table 43 - iOS TAP plugin test steps

Test step Setting Description

Restart Device

(iOSRestartStep)
 Restarts an iOS device.

 iOS / iOS
iOSInstrument which will handle the
communication.

Device / Device
ID

UDID of the targeted iOS device.

Start Logging

(iOSStartLoggingStep)

Starts saving the iOS syslog in a file in the remote
machine.

 iOS / iOS
iOSInstrument which will handle the
communication.

Device / Device
ID

UDID of the targeted iOS device.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 77/97

Options / Logfile
Name

Path of the file to save the syslog in the remote
machine.

Stop Logging

(iOSStopLoggingStep)

Stops saving the iOS syslog in the remote
machine.

 iOS / iOS
iOSInstrument which will handle the
communication.

Device / Device
ID

UDID of the targeted iOS device.

Start Traffic Capture

(iOSStartTrafficCaptureStep)

Starts saving iOS network traffic in a pcap file in
the remote machine.

 iOS / iOS
iOSInstrument which will handle the
communication.

Device / Device
ID

UDID of the targeted iOS device.

Options / Capture
file name

Path to the pcap file to save captured traffic in the
remote machine.

Stop Traffic Capture

(iOSStopTrafficCaptureStep)
 Stops saving iOS network traffic.

 iOS / iOS
iOSInstrument which will handle the
communication.

Device / Device
ID

UDID of the targeted iOS device.

Launch App

(iOSLaunchAppStep)
 Starts an app in the iOS device.

 iOS / iOS
iOSInstrument which will handle the
communication.

Device / Device
ID

UDID of the targeted iOS device.

Options / Bundle
id

Bundle id of the app that will be started.

Options /
Attempts

The number of attempts to launch the app

Figure 31 shows the main classes that will be part of the implementation of this plugin for iOS.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 78/97

Figure 31 Main classes of TAP plugin for iOS

16.6 Impairments TAP plugin

This plugin allows TAP to control an impairments SCPI server that can set impairments on
remote hosts using SSH and netem.

16.6.1 Impairments TAP plugin instruments

The instrument provided by this plugin is able to control the TRIANGLE Impairments System
running on a remote host by using the SCPI interface. This instrument can be configured so that
all the impairments are automatically disabled after a test plan has been completed.

16.6.2 Impairments TAP plugin steps

16.6.2.1 Set Link Impairments

This step can be used to configure the impairments applied on a specific link. The supported
impairments are latency, link errors, packet duplication and packet reordering.

Table 44 Settings for the Set Link Impairments step

Step Setting Description

Set Link Impairments Common / Alias Alias of the link that will be configured

Common /
Impairments
System

Impairments system that will be targeted by the step

Latency / Latency
Enabled

Enable or disable the latency impairment on the link.

Latency / Mean
Latency

Mean latency in milliseconds

Latency /
Variance

Latency variance

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 79/97

Latency /
Correlation

Correlation percentage of the latency

Latency /
Distribution

Statistic distribution of the latency. The supported
distributions are Normal, Pareto and Pareto-Normal.

Link Errors / Link
Errors Enabled

Enable or disable the Link Errors impairment on the
link.

 Link Errors / Mean Mean percentage of link errors.

Link Errors /
Correlation

Correlation percentage of the link errors.

Duplication /
Duplication
Enabled

Enable or disable the Duplication impairment on the
link.

Duplication /
Percentage

Percentage of duplicated packets on the link

Reordering /
Reordering
Enabled

Enable or disable the Reordering impairment on the
link.

Reordering /
Percentage

Percentage of reordered packages in the link.

Reordering /
Correlation

Correlation percentage of reordering.

16.6.2.2 Reset impairments

The reset impairments step can be used to disable all the configured impairments on every link
controlled by the impairments system.

Table 45 Settings for the Reset Impairments step

Step Setting Description

Reset Impairments
Common /
Impairments
System

Impairments system that will be targeted by the step

16.7 RF Switch TAP plugin

This plugin provides steps and an additional instrument for controlling a LXI-compliant 11713C
attenuator/switch driver available on the TRIANGLE testbed. This switch driver is used
alongside Keysight L7104A electro-mechanical switches, in order to allow the users to select
one of the available devices in the testbed at any given time.

16.7.1 RF Switch instruments

The plugin provides an instrument for controlling an 11713C attenuator/switch driver through
the SCPI interface. The instrument is able to open/close the connections on two Banks (with
two L7104A switches each, one for RX and the other for TX). Each switch provides four possible
paths. Using this configuration, the instrument is able to handle the connection of a maximum
of eight devices.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 80/97

16.7.2 RF Switch steps

16.7.2.1 Close all paths

This step can be used for closing all the paths controlled by the switch driver, so that all the
devices are disconnected.

Table 46 Settings for the Retrieve Background Logcat step

Step Setting Description

Close all paths
Common / RF
Switch

11713C attenuator/switch driver that will be targeted
by the step.

16.7.2.2 Open path

The Open Path step can used to open matching paths on both L7104A switches of the selected
bank. This will connect the TX and RX RF ports of one of the devices connected to the
TRIANGLE testbed, closing all other connections so that only one device is used at any given
time.

The step can also be used to configure the attenuation level used on the connection.

Table 47 Settings for the Open Path step

Step Setting Description

Open path
Common / RF
Switch

11713C attenuator/switch driver that will be targeted
by the step.

 Settings / Bank Bank where the device to be used is connected.

 Settings / Path

Settings / Sett
Attenuation

Attenuation level of the connection.

16.7.2.3 Connector switching

The Connector Switching can be used to configure the connections on the rear panel of the
11713C attenuator/switch driver. This can be used to change the position of a coaxial switch
connected to the rear panel.

Table 48 Settings for the Connector switching step

Step Setting Description

Connector Switching
Common / RF
Switch

11713C attenuator/switch driver that will be targeted
by the step.

 Bank 1 / S9 A\B
Enable or disable switching on the S9 connector on
Bank 1

 Bank 1 / S0 A\B
Enable or disable switching on the S0 connector on
Bank 1

 Bank 2 / S9 A\B
Enable or disable switching on the S9 connector on
Bank 2

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 81/97

 Bank 2 / S0 A\B
Enable or disable switching on the S0 connector on
Bank 2

16.8 GPS emulation TAP plugin

GPS emulation is a new feature of the testbed introduced in Section 11. This section describes
the TAP plugin implemented for its control. The TAP plugin is based on a REST API also
described in this section.

16.8.1 REST service

16.8.1.1 Resource definition

For the control of the emulator a RESTful (Representational state transfer) web service has
been implemented. This service runs on the emulator system and allows the user to send
petitions that are transformed in actions over the USRP (Universal Software Radio Peripheral).
The user only needs to configure all the parameters required for the generation of the signal,
which would be the resource of the service.

Specifically in this service, the resource will consist on a set of different types of data items,
each one corresponding with a parameter of the emulator configuration. The exact structure of
this resource is shown in the next piece of code. This structure covers all the possible fields that
have been implemented so far.

Not only one structure has been created but a set of them, which allows the user to save different
configurations as long as the service is running.

16.8.1.2 Methods definition

Once the resource has been defined, the next step is to implement all the methods that will act
over these resources.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 82/97

The root URL to access to the resources of this service is: http://hostname/GPSsimulation, in
which “hostname” would be the IP address of the server where the service is running. This
service uses the HTTP language basic methods: GET, POST, PUT and DELETE.

These are all the URLs to access the resources implemented in the service:

http://hostname/GPSsimulation

http://hostname/GPSsimulation/command_id

http://hostname/GPSsimulation/command_id/start_simulation

http://hostname/GPSsimulation/command_id/start_static_simulation

Using the GET method and the URL http://hostname/GPSsimulation all the resources stored in
the server are listed.

The “command_id” field is the resource’s identification, it can be manually or automatically
defined, and enables access to a specific resource.

The last two URLs have the same functionalities, the only difference is the emulation mode:
static or dynamic. The first one starts the emulation of the KML file contained in the resource,
and the second one extracts the first coordinate and then generates the appropriate signal.

Table 49 illustrates all the rest of the functionalities the service can do, for each URL several
methods can be applied.

Table 49 – GPS API Rest

 /command_id
/command_id/start_simulation

/command_id/start_static_simulation

GET
Shows a specific
resource

Shows the emulation state

POST Creates a new
resource

Starts a new emulation

PUT Updates a
resource

Not implemented

DELETE Removes a
resource

Stops an emulation currently running

16.8.1.3 TAP plugin

In order to integrate and control the emulator in the TAP platform, an Instrument called
USRP and four test steps have been implemented: PrepareSimulation, StartSimulation,
SettleGPS, StopSimulation, and GetState.

The instrument has as configurable parameters the IP direction and the port of the server. It
contains the necessary functions to allow the communication with the server.

http://hostname/GPSsimulation/
http://hostname/GPSsimulation

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 83/97

Figure 32 URSP instrument

The PrepareEmulation step creates the necessary files to start an emulation for both cases,
either a static one or an emulation of a complete route. The parameters needed to configure
any emulation must be setting here. Besides the selection of the route itself, it allows the
configuration of the speed, and the signal gain. The KML file and the speed are always required.
The default value for the gain is 0 dB, which in most cases should be enough to obtain a good
signal.

Figure 33 PrepareEmulation step

The StartEmulation step starts an emulation of a particular route previously uploaded by the
user, the only parameter that can be specified here is the duration of the emulation. If this
parameter is not specified, the default value used is the time that it takes to go over the route at
the selected speed. This step must be executed after the Preparing step has finished.

Figure 34 StartEmulation step

The SettleGPS step performs the static simulation of the route’s first position with the aim of
settling the GPS signal in the receiver device. As in the previous step, the only configurable
parameter is the duration of the emulation. If no value is selected the default duration is the
necessary until the mobile phone has reached a fixed signal.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 84/97

The StopSimulation step stops the signal emulation. It acts on either the static or the dynamic
emulation. This step does not have any parameter to configure as they are not necessary to
accomplish the function requested.

The GetState step provides the state of the current emulation signal. There are eight possible
states implemented: WAITING, IN PROCESS, SIMULATION FILE CREATED, RUNNING,
FIXED POSITION, FINISHED, STOPPED and ERROR.

The idle state of any emulation process is “WAITING”. Once the service received the order to
start a new emulation, it starts the creation of the simulation file using the software GPS-SDR-
SIM and the state would change to “IN PROCESS” until the creation of the file ends, and then
the state changes to “SIMULATION FILE CREATED”.

If there are no problems during the signal emulation, the next state would be “RUNNING”, and
the USRP would be transmitting the signal to the device. Once the emulation ends, the state
will change to “FINISHED”.

If the emulation is interrupted on purpose, the state will show this as “STOPPED”. Also, if there
is some error during any part of the emulation the state would inform about it.

Additionally the state “FIXED POSITION” indicates when the mobile has reached a fixed signal
and has a stable position. This is used to stop sending a static emulation signal and start the
emulation of the complete route.

16.9 Dynamic Sequence plugin

In order to efficiently enable the parallel test execution structure described in 4.2.5, a new plugin
needs to be introduced, called DynamicSequence, has been introduced.

This plugin adds two new test steps: “Dynamic Sequence” and “Break Event”. These test steps
allow to finely control the test execution flow by indirectly introducing the concept of master and
slave sequences. The core idea is to classify the sequence containing the application flow as
master, and the sequence containing the network scenarios as slave. The slave sequence will
run in a loop while the master sequence is running, and to exit when the master is finished.

This is achieved by inserting all network scenarios test steps under a Dynamic Sequence test
step, and they will loop until the Break event test step is reached. Naturally, the Break Event
test step is located at the very end of the master loop containing the application flow, thus
making the slave sequence (containing the network scenarios) loop until the application flow is
complete.

The Dynamic Sequence test step additionally contains the feature to start at random child step,
to guarantee even distribution of sub scenarios’ execution.

This logic is illustrated on Figure 35: the 4 sub scenarios A, B, C, D loop until the Trigger break
event contained the Parallel 1 sequence is reached. The initial subscenario is also random.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 85/97

Figure 35 Dynamic Sequence to enable master & slave sequences

16.10 Iteration-aware result listener plugin

A test case requires to be run multiple times to reach statistically meaningful and converged
test results. Results from each iteration need to be saved separately to calculate KPIs, and
pinpoint possible sporadic performance outliers. To achieve iteration-aware tagging of test
results, a new Result Listener has been added to TAP, injecting the application flow iteration
into the test results.

16.11 KPIs calculation plugin

Finally, a KPI calculation plugin has been created. The plugin is aware of the domain, use case
and test case of the results it receives as input, and calculates the relevant KPIs for this
combination. For instance, the plugin gets pointed to a test result, and it detects that it is a result
from a “User Experience with Reference Apps” domain, “Social Networking” use case, test case
“001” (which is Picture Posting), and will expect to find measurements corresponding to the
timing of posting pictures on a reference social networking application. The plugin will then parse
the measurements and calculate the KPIs as described in the DRA (Mobile devices User
Experience with reference apps) Test Specification, and pass these KPIs into a database to be
aggregated further.

16.12 Plugins to reach TAP server

As described in section 4.2.3, when TAP is executed as a server, it can be reached remotely to
run test cases.

There are two means to reach the TAP server:

- TCP remote

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 86/97

o A TCP connection is made to the machine hosting TAP, requesting the TCs to be
executed

- REST API

o An API to communicate directly to the TAP server is used instead

16.13 DEKRA TAP plugin

This section describes the implementation of the TAP plugin for the integration of the DEKRA
Performance Tool in the TRIANGLE testbed.

16.13.1 DEKRA Performance Tool Interface

The plugin implementation relies on the interface exposed by the tool, the Remote Control (RC)
Sever. The TAP plugin is therefore an implementation of a RC Client.

The RC Server can be accessed with the following parameters:

Table 50 – DEKRA Tool RC Server channel

Item Setting

LAN IP Address IP address of the Performance Tool

Protocol TCP

Port 11500

End of Sentence ‘\n’ (line feed)

The RC Client (i.e., the TAP plugin) shall open a connection to that service and send commands.
All commands imply a response from the RC Server that the RC User shall read right after
sending the command.

16.13.2 Instrument

Table 51 shows the operations implemented for TAP Instrument management.

Table 51 – DEKRA Tool TAP Instrument

Operation Description

Open Creates the socket with the DEKRA Tool RC Server

Close Closes the socket with the DEKRA Tool RC Server

Settings
DEKRA Tool RC Server settings: IP address, port, operation mode, and
project/session name

End of Sentence ‘\n’ (line feed)

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 87/97

Figure 36 DEKRA Tool TAP Instrument

16.13.3 DUT (TACS4-Agent)

Table 7 shows the operations implemented for TAP DUT management.

Table 52 – DEKRA Tool TAP DUT

Operation Description

Definition
Defines the Agents which participate in the test. Adding a DUT does not necessarily
implies its usage.

Configuration Defines the configuration of the TACS4-Agent: IP address, Port, etc.

Open/Close
There is no method for open/close. TAP by default initiates the DUT before the
Instrument.

Add Agent

This is the step which adds and configure a Agent to the configuration of the RC
Server. The only parameter of this operation is the DUT itself. The step reads all in
the information stored in the TAP DUT and builds the RC Server configuration
commands.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 88/97

Figure 37 DEKRA Tool TAP DUT

16.13.4 Test Step

Table 53 shows the operations implemented for TAP Test Steps management.

Table 53 – DEKRA Tool TAP Test Steps

Operation Description

Configuration

The configuration of the test steps is similar in all the tests except for the input
parameters. For example, below is the input parameters for YouTube;

• Video Id

• Timeout

Execution

The test steps have basically three methods and a constructor.

The constructor initializes the input parameters with default values.

The methods pre-plan and post-plan are used to do operation before and after start
the test plan. These methods are not used in this plugin.

The method “run” is used to execute the test step itself. This methods implements
the configuration of the test based on the actual input parameters.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 89/97

Figure 38 DEKRA Tool TAP Test Step (YouTube test)

16.13.5 Run/Stop Test

Both Run and Stop Test steps have one single input parameter the TAP Instrument itself.

Figure 39 DEKRA Tool TAP Run/Stop Test

The step Test Run is blocking and block the TAP Tets Plan until the step finishes.

16.13.6 Get Results

The DEKRA TAP plugin reports the measurements with one second resolution. This feature is
available because the RC server implements a function called “Get Vector”.

Additionally, the DEKRA TAP Plugin also reports the system measurements collected from the
test phone (e.g., CPU usage, battery status) with one second resolution as well.

Table 54 shows an extract of the RC server specification which has been used to implement
the DEKRA TAP plugin get results procedures.

Table 54 – DEKRA Tool RC Server Get Results

Operation Description

Get <x> Vector

This function returns the list of pairs (timestamp, <x>) as measured throughout the
test session, where <x> is the type of measurement: Thorughput, One way delay,
pachet loss, or jitter.

Example:

RESULT:OWDGETVECTOR 2016-05-02 16h 20m 10s,

MyUDPFLOW,averaged

 OK: 0.067,42.123,1.069,42.325,2.071,45.322,3.075,46.123

Get RASM Vector

This function returns the list of pairs (timestamp, phone parameter) as measured
throughout the test session.

Example (fro WLAN RSSI):

RESULT:RASMGETVECTOR 2016-05-02 16h 20m 10s, Agent1, wlan.rssi

OK: 0.067,-42,1.069,-42,2.071,-45,3.075,-46

Get YOUTUBE Returns the YouTube KPIs from a specific Agent. Possible KPIs:

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 90/97

Possible values:

• ib:Initial buffering in seconds

• rb_index: Re-buffering index (0-inf)

• rb_avg: Average re-buffering time (s)

• rb_max: Maximum re-buffering time (s)

• rb_total: Total re-buffering time (s)

• rb_number: Number of re-bufferings

• size: Playback size in MB

• MOS: MOS (1-5)

• duration: Playback duration in seconds

• thoughput: Average throughput in Mbit/s

• vq_first: First video quality

• vq_ last: Last video quality

• vq_mode: Most used video quality

• vq_avg: Average video quality

• vq_144: % time in 144p

• vq_240: % time in 240p

• vq_360: % time in 360p

• vq_480: % time in 480p

• vq_720: % time in 720p

• vq_1080: % time in 1080p

• vq_2k: % time in 1440p

• vq_4k: % time in 2160p

Example:

RESULT: YOUTUBEGETKPI 2016-05-02 16h 20m 10s, Agent1,MyYou,1,ib

OK: 1.123,2.123,,3.245

16.13.7 Error Handling

All the commands implemented in the DEKRA Tool RC Server handle the error cases and return
error code and message. These codes and messages are transparently propagated up to the
TAP GUI via the DEKRA TAP Plugin. The DEKRA TAP plugin does not implement any
additional error handling. It just forwards the error coming up from the RC Server.

FAIL is reported whenever the error does not prevent the execution of the TAP test plan.
ERROR is whenever the error prevents the execution of the TAP test plan (e.g., the DEKRA is
unable to connect to the Agent running on the test phone).

16.14 VELOX plugin

The testbed includes an over-the-top-content enabler, the RedZinc VPS Engine or Velox. Velox
can be used by third-party applications to configure traffic priorization to request a specific
quality of service (QoS).

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 91/97

RedZinc provides the Velox engine. This allows the testbed to offer a service with specific
bandwidth request API on radio network.

There is an on-demand service which can be activated and deactivated in real-time or “on-
demand”. Velox is accessible via the TAP plugin or directly via its API.

The VELOX TAP plugin was created to work as a simple VELOX API client, with the 3 steps
described in the following table.

Table 55 - VELOX TAP Steps

Test step Setting Description

VELOX Access Setup
Configures the access details of the VELOX Multi-
domain Orchestrator

 VELOX Address IP of the VELOX Server

 VELOX Port Port where the VELOX API is listening

 VELOX API Key VELOX API Key for service activation

Create VELOX QoS Slice
Session

Creates a VELOX QoS based Virtual network Path
Slice session

 Source Address IP address of the origin end-point (IPv4 or IPv6)

Destination
Address

IP address of the destination end-point (IPv4 or
IPv6)

VELOX Slice
Service

Pre-packaged Bandwidth Slice Sizes

VELOX Slice
Session ID

ID generated by VELOX upon slice creation for
use in stop step

Stop VELOX QoS Slice
Session

Stops a VELOX QoS based Virtual network Path
Slice session

VELOX Slice
Session ID

Session ID of the Slice previously created,
obtained from the creation step

All necessary information for the VELOX Access Setup is to be provided to experimenters by
the testbed manager.

Experimenters themselves must provide the source and destination IPs for the slice creation
(ipv4 and ipv6 supported) and must choose one of the pre-packaged VELOX Slice Services
from the pool of 1,2,5,10,25,50 Mbps.

This plugin allows experimenters to control when QoS based bandwidth slices are
activated/deactivated for specific end-points at specific times in the tests without requiring
software changes on their applications. To this end, no specific ties between steps where
established so that experimenters are free to place them anywhere in the test, with the caveat
that the setup step should always be the first and that stop should be after create, otherwise the
test steps will fail.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 92/97

Figure 40 - Expected VELOX Step Order

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 93/97

17 Appendix 3: Android Instrumentation Library Usage

This appendix describes the particular implementation and usage details of the Android
Instrumentation Library. The same library can be used from Unity apps, as described later in
this section.

17.1 Including in an Android project

The library is distributed as an AAR library file. To include the library in your own Android Studio
project, follow the instructions in the Android Developers site:

1. Download the AAR file

2. Open the app project in Android Studio

3. Import the file as a new module:

1. Click File > New > New Module

2. Click Import .JAR/.AAR Package then click Next

3. Enter the location of the AAR file

4. Name the subproject “TRIANGLE-appinstr”

5. Click Finish

4. Make sure the library is listed at the top of your settings.gradle file:

include ':app', ':TRIANGLE-appinstr'

5. Open the app module’s build.gradle file and add a new line to the dependencies block:

dependencies {
 compile project(':TRIANGLE-appinstr')
}

6. Finally, click Sync Project with Gradle Files.

https://developer.android.com/studio/projects/android-library.html
https://developer.android.com/studio/projects/android-library.html#AddDependency

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 94/97

Please, see the Android Studio project provided with the Android Library as an example of how
to include it in an Android project.

Other ways of integrating the Library in an Android app may work, but are not supported.

17.2 Usage

The library classes are organized into packages according to the use cases. Each package
contains one class per feature of that use case. Each class contains one method per
measurement used to compute the KPIs relevant to that feature.

The base package for the Android Library hierarchy is eu.TRIANGLE_project.appinstr.

The package/class/method organization is as follows:

• Base package: eu.TRIANGLE_project.appinstr

o Use case package: <use_case>

▪ Feature class: <feature>Measurements

• Measurement method: <measurement>

The measurement methods are all static. There is no initialization involved in the usage of the
Library. Therefore, they can be called from anywhere in the code of an Android application.

17.2.1 Custom measurements

To provide custom measurements, the Android instrumentation library provides a
CustomMeasurement class in the eu.TRIANGLE_project.appinstr.custom package, with a set
of overloaded methods called custom. These methods have two or three arguments: the feature
and measurement names, and optionally one measurement argument.

17.3 Example

This section uses fictional names for features and measurements, to show an example of the
use of the Android Library.

Let “social media” be a use case with the following features: “post picture” and “post video”. For
each of these features, there are four measurements: “picture/video size” “picture/video upload
start”, “picture/video upload end”, and “upload success”. The instrumentation library will have
two classes with four methods each, as follows:

• eu.TRIANGLE_project.appinstr.socialmedia

o public static class PostPictureMeasurements

▪ public static void pictureSize(int size)

▪ public static void pictureUploadStart()

▪ public static void pictureUploadEnd()

▪ public static void uploadSuccess(boolean success)

o public static class PostVideoMeasurements

▪ public static void videoSize(int size)

▪ public static void videoUploadStart()

▪ public static void videoUploadEnd()

▪ public static void uploadSuccess(boolean success)

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 95/97

Let us assume that a particular app performs a picture upload inside an uploadPicture method.
The measurement methods could be called inside that method, where the required values are
known. In particular, those related to events (i.e. “picture upload start/end”) should be placed as
close to the actual place where that event happens, to provide precise measurements.

import eu.TRIANGLE_project.appinstr.socialmedia.PostPictureMeasurements;

public class MediaUploader {
 public void uploadPicture(Picture picture) {
 PostPictureMeasurements.pictureSize(picture.getSize());

 PostPictureMeasurements.pictureUploadStart();
 // Perform actual upload
 boolean uploadResult = doUploadPicture(picture);
 PostPictureMeasurements.pictureUploadEnd();

 PostPictureMeasurements.uploadSuccess(uploadResult);
 }
}

In addition, the app developer may want to provide a custom measurement with some metadata
from the picture. The following snippet adds a couple of custom measurements to the previous
one:

import eu.TRIANGLE_project.appinstr.socialmedia.PostPictureMeasurements;
import eu.TRIANGLE_project.appinstr.custom.CustomMeasurements;

public class MediaUploader {
 public void uploadPicture(Picture picture) {
 PostPictureMeasurements.pictureSize(picture.getSize());
 CustomMeasurements.custom("picture_metadata", "exif",
 picture.getExif());
 CustomMeasurements.custom("picture_metadata", "md5",
 picture.getMd5());

 PostPictureMeasurements.pictureUploadStart();
 // Perform actual upload
 boolean uploadResult = doUploadPicture(picture);
 PostPictureMeasurements.pictureUploadEnd();

 PostPictureMeasurements.uploadSuccess(uploadResult);
 }
}

An Android Studio project is provided to the experimenters with a minimal example of how to
log custom measurements from an Android application. This application has been generated
from one the Android Studio project templates. When FAB (floating action button) is pressed on
the main and only activity, four custom measurements are logged.

17.4 Using the Android Instrumentation Library from Unity

The Android Instrumentation library can be used in Unity apps for Android.

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 96/97

17.4.1 Including in a Unity project

Copy the AAR library file to a subfolder of the project’s Assets folder (At the time of writing,
drag-and-drop is not supported for AAR libraries). The library will be automatically detected.

It is important to note that the library cannot be used while running the application inside the
Unity editor, since an Android environment is required. In the editor, the following exception will
be thrown:

The instrumentation library will work while using the Android emulator or a device.

If your Unity project targets other platforms besides Android, you can use platform dependent
compilation.

17.4.2 Usage

In order to use the measurement methods of the instrumentation library, you must first obtain a
reference to the required library class using AndroidJavaClass. For instance, the following
instantiation will return a reference to the PostPictureMeasurement class:

AndroidJavaClass postPictureMeasurements = new AndroidJavaClass(
 "eu.TRIANGLE_project.appinstr.socialmedia.PostPictureMeasurements");

Using the CallStatic method on the AndroidJavaClass, the measurement methods of the
instrumentation library can be called from the code of the Unity application. For instance, the
pictureSize method can be called as:

postPictureMeasurements.CallStatic("pictureSize", new object[] {
 picture.getSize() });

It is important to note that you must make sure that the arguments to the method are cast to the
appropriate type. For instance, if you want to call a method that has a double argument, but you
have a float variable, you must explicitly cast that variable to double.

The included Unity project shows a minimal example of how to log custom measurements from
a Unity application.

17.5 Retrieving messages

This information is internal and subject to change.

Measurements are written to Android’s logcat with the TRIANGLEInstr tag and INFO priority.

https://docs.unity3d.com/Manual/PlatformDependentCompilation.html
https://docs.unity3d.com/Manual/PlatformDependentCompilation.html

Document: ICT-688712-TRIANGLE/D3.2

Date: 20/07/2018 Dissemination: PU

Status: Final Version: 1.1

TRIANGLE PU 97/97

17.6 Measurements format

This information is internal and subject to change.

Internally, the measurements library uses messages with a textual representation to pass the
measurements from the application to the testbed orchestration. This section describes the
current format of these messages.

17.6.1 Message format

The messages produced from an instrumentation library should have the following format:

<timestamp>\t<use_case>\t<feature>\t<measurement>[\t<value>]

Note that \t denotes a tab character, and that the part surrounded by square brackets is optional.
The variables used in the format are:

• <timestamp>: the timestamp from the message

o The timestamp is in the UTC timezone

o The timestamp is formatted using the following ISO 8601 representation:
<date>T<time>, where

▪ <date>=YYYY-MM-DD, with YYYY, MM, DD as zero-padded year, month
and day, respectively

▪ <time>=hh:mm:ss.sss, with hh, mm, ss, sss as zero-paded hour, minute,
second, and millisecond, respectively

• <use_case>: the id of the use case

• <feature>: the id of the feature

• <measurement>: the id of the measurement

• <value>: the actual value or values reported for the measurement

o The actual format of the value depends on the type used in the measurement

17.6.1.1 Value format

A measurement may have zero or more arguments, which together form the value of the
measurement. If a measurement has more than one argument, then <value> contains a tab-
separated list of each of the argument values.

The format of each argument depends on its type. The following types are supported as
arguments of a measurement:

• boolean: true and false values are formatted as true and false, respectively

• int: integers are formatted using base 10

• double: floating point values are formatted using an IEEE 754 compatible format

• string: strings are placed between double quotes ("), e.g. "Hello, World!"

o quotes inside strings must be escaped with \, e.g. "Hello, \"World\"!"

o new-line characters should be escaped as well, as \n and \r, e.g. "line1\nline2"

